Graduate School Bulletin

Spring 2025

Facilities and Areas of Specialization for the Mechanical Engineering Department

Design and Manufacturing

Studies include CAD/CAM, kinematics and mechanisms, robotics, vehicles, manufacturing systems, dynamics and vibration, control, design optimization, mechatronics, microelectromechanical systems (MEMS), micro/nano-technologies, smart structures, and energy harvesting. Research topics cover task driven creative design of mechanical and electro-mechanical systems, such as high performance machinery and robots, mechanisms, and sensors, including dynamics, motion, control, and vibration-related problems; traditional and advanced manufacturing, manufacturing process modeling, human augmented systems, and intelligent fault detection and diagnosis; clean energy systems. Applied courses emphasize case studies, dynamics and control, finite element methods, and computer graphics. Also featured are an array of equipment and software for research and teaching, such as mechatronic systems, robots, CAD/CAM stations, CMM, desktop rapid prototyping machine, software for computer-aided engineering.


Mechatronics synergistically integrates mechanical engineering, electrical engineering, software, and controls into smart electromechanical products and systems. Research in this area highlights modeling, analysis, design, control, and prototyping in a system-level approach, which requires a broad knowledge of mechanics, materials, mechanical design, manufacturing, vibration, dynamics, sensors, actuators, electronics, signals and control. Applications include industrial and laboratory automation, biomedical devices, servo machines, vehicle systems, smart structures, and energy systems.

Solid Mechanics  

The mechanical behavior of advanced materials and structures is studied with emphasis on mathematical modeling and simulation of deformation, failure, stability, and microstructural transformation. These issues span a wide range of interests that focus on various materials, systems, and multiple length scales. Research topics include fracture mechanisms of embedded flaws in coatings and thin films, delamination in composites, and the mechanical properties and behavior of micron-scale structures and systems, such as microelectromechanical systems.

Also investigated are the constitutive modeling and failure characterization of ceramics, polymers, and heterogeneous multi-component materials, soft materials and nano- and micro-mechanics of defect formation. Experimentally based research programs focus on the mechanical, thermomechanical, and failure behavior of a wide variety of materials such as metals, polymers, ceramics, hard and soft biological tissues, and composites under both static and dynamic loading conditions. Optical techniques of strain analysis, including moiré methods, laser and white-light speckle methods, holographic interferometry, photoelasticity, and classical interferometry are developed and applied to solid mechanics problems such as fracture, wave propagation, metal forming, vibration, and deformation of micron-scale structures and systems such as MEMS. Characterization of micron and nano-scale materials and structures is accomplished with instrumented-indentation and scanning probe microscopy techniques for wear and harsh environment applications. Research is also conducted to characterize the failure mechanics of various engineered heterogeneous materials systems, ranging from functionally layered/ graded coatings to nanocomposites under impact loading and high-temperature conditions. Specialized equipment includes high-speed digital cameras, scanning electron microscope, and split Hopkinson pressure bars, and in situ micromechanical high-temperature fatigue testing system.

Thermal Sciences and Fluid Mechanics  

Fluid Mechanics: Current research areas include theoretical, computational, and experimental studies of micro- and nanofluidic devices, complex fluids and colloidal materials for applications in separation processes and energy conversion. Wetting and adsorption in micro/nanostructured materials and nanoparticle transport in multiphase systems. Numerical and theoretical studies including direct simulation of turbulent flows and turbulent transport at modest Reynolds numbers, stochastic modeling of the turbulent transport of temperature, and spectral closure approximations for chemically reactive flows. Additional current topic includes advanced combustor design and flow control, and the behavior of chemically reacting species in turbulent flows.

Thermal Sciences: Current topics include measurement of thermophysical properties, laser-material interaction, materials processing, heat transfer in advanced energy systems, advanced combustion processes, and internal combustion engines. The ultra-fast thermal processing and laser-based measurement laboratory has an amplified oscillator/ regenerative amplifier, a femtosecond autocorrelator, and a host of optoelectronics and light sources. The thermal science research laboratory has a visualization and digital image processing system. Studies also include methods and analytical tools for predicting, modeling and correlating the thermodynamic/thermophysical properties of the fluids. Current studies include the development of statistical mechanical techniques to assess the relation between intermolecular forces and the thermodynamic, dielectric, optical, and transport properties of fluids, fluid mixtures, and suspensions. Research is also being conducted on the modern formalism of thermodynamics; on combustion heat engines, aiming at achieving high fuel efficiency and engine performance; and on building energy dynamics. The Advanced Combustion Research laboratory includes three single-cylinder research engines equipped with state-of-the art instrumentation and data acquisition systems. These research engines are used to investigate advanced and low temperature combustion processes for use in future power generation and propulsion systems. Experimental research on combustion is supported by modeling activities using Computational Fluid Dynamics (CFD) and system level modeling

Energy Technologies: The Energy Technologies program consists of a set of graduate courses designed to offer practical laboratory and design experience on modern energy conversion systems. The Energy Technologies Laboratory contains experimental facilities and equipment that are used to study the design and operating characteristics of fuel cells, wind turbines, photovoltaics, thermo-electrics, heat pumps, optical and infrared sensors, as well as motors, generators, and batteries. Thermal sciences and fluid mechanics are the core disciplines of the emerging field of energy technologies and sustainability science—a vibrant field of research and innovation. The Energy Technologies Laboratory contains fuel cell, wind turbine, photovoltaic, thermoelectric, heat pump, optical and infrared sensors, and motor/generator/battery facilities.