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Abstract of the Dissertation

Coherent Manipulation of Rydberg Helium
Atoms in Inhomogeneous Electric Fields

by

Seung Hyun Lee

Doctor of Philosophy

in

Physics

Stony Brook University

2006

Coherent manipulation of atomic motion has been a subject of

increased interest in atomic physics because it provides the oppor-

tunity to perform precision spectroscopy. Since the first demonstra-

tion of laser cooling techniques, exerting controlled optical forces

on neutral atoms has made it possible to develop new tools for

working on the near-atomic scale. While most of these tools are

based on manipulating atoms with laser light, a different method

which exploits the interaction of Rydberg atoms with inhomoge-

neous electrostatic fields to control the atomic motion was proposed

in 1981.
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Atoms in Rydberg states have a large dipole moment because

their outer electrons are located far from the core. Due to the rel-

atively strong dipole interaction, therefore, the motion of Rydberg

atoms can be affected even by weak and moderate field gradients.

Ultimately, it is desirable to maximize the population in the Ry-

dberg states to increase the intensity of the beam focused by an

electrostatic lens. In a new approach to achieve a highly efficient

population transfer, we take advantage of the highly efficient Stim-

ulated Raman Adiabatic Passage (STIRAP) excitation technique.

In this thesis, we first present an investigation of the Stark-

shifted atomic energy levels and compare our observations to nu-

merical calculations. Once the state with the highest transition

efficiency has been identified we employ the coherent STIRAP exci-

tation technique in order to achieve a complete population transfer

from the metastable ground state to the target state via an inter-

mediate state in the three-level ladder system 23S1 → 33P2 → nLj

of triplet helium. In order to fulfill the strict conditions for STI-

RAP, we also need to know the Rabi frequencies of the laser fields.

For this purpose, the Autler-Townes effect is also examined.

Finally, we demonstrate an example of atom optics by focusing

the atomic beam with our electrostatic lens after preparing the
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metastable helium atoms in one of the well-defined Rydberg states.

Possible applications of this new technique are nanofabrication or

lithography.
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Chapter 1

Introduction

1.1 General Background

There has been great interest in developing new techniques to exert con-

trolled force on the atoms and to manipulate atomic trajectories [1]. To control

the motion of atoms and exploit their wave-like properties it is crucial to in-

vent elements which have the same effect on atoms as mirrors, lenses, beam

splitters, etc. on light [2]. The possibility of the field of atom optics can be

traced back to Kepler [3]. The trajectory of a comet tail is directed away from

the sun because the light of the sun carries momentum and thus affects the

trajectory of the tail. If we explain this situation from the classical viewpoint

of the atom-field interaction, the light force on atoms comes from the dipole

potential due to the light [3]:

V (x, r, t) = −d · E (r, t) (1.1)

where d is the electric dipole moment, r the center-of-mass coordinate of the

atom, x the position of the electron relative to the nucleus, and E (r, t) is the
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electric field. This fact explains the possibility that the atomic trajectories

can be manipulated by the dipole force of the field.

Although this classical picture of atoms moving in a comet tail without

regard to their overall wave-like character has been of great use, the expla-

nation of recent experiments on atom optics requires a quantum mechanical

atom-photon interaction model [2]. In 1923, Louis de Broglie proposed that

all massive particles should be thought of as waves [4] and that the wave-like

properties of any massive particle of mass M could be characterized by the

so-called de Broglie wavelength [3]

λdB =
h

Mv
(1.2)

where h is Planck’s constant and v the particle velocity. The first experimental

confirmation of Eq.(1.2) was done for the case of electrons by Davisson and

Germer in 1927 [5]. A further development was established by Otto Stern

and co-workers in 1929 who demonstrated that atoms can be reflected and

diffracted from metal surfaces [6].

At that time, it was exceedingly difficult to detect the wave-like properties

of thermal atoms because the dependence of the thermal de Broglie wavelength

on the temperature T
(
λth ∝ 1/

√
T

)
gives λth ≈ 102 nm at room tempera-

ture [7]. Effects of such short wavelength are enormously difficult to observe.

Thus the results of those experiments can be regarded as the starting point of

experimental atom optics.

Further developments in this field depended critically on increasing the

thermal wavelength by lowering the temperature so that profound progress
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towards manipulating atomic motion was directly linked with the invention of

the laser. One of the first experiments with lasers was done by Cook and Hill

[8], who suggested that an atom is reflected from a dielectric surface in the

thin transmitted evanescent wave of laser radiation. The evanescent wave is

formed on the dielectrics surface if blue detuned laser light is totally reflected

internally at a vacuum-dielectric interface. Thus the evanescent wave acts as

an atomic mirror.

For the first experimental observation of atomic diffraction Pritchard and

his coworkers [9] employed an optical standing wave as a diffraction grating.

In addition to atomic mirrors and diffraction gratings, there have been several

experiments to build coherent atomic beam splitters. In a first experiment,

Moskowitz et al. [10] showed that an atomic beam crossing a standing wave

is split into two symmetric peaks.

Among all these developments one of the most important achievement in

atomic physics was initiated by Wineland and Dehmelt [11] and Hänsch and

Schawlow [12] who discussed new ideas for using laser light to cool atoms.

They realized that atoms can be cooled to very low temperature using laser

light pressure [2]. In fact, laser cooling techniques enable us to produce atomic

samples as cold as several micro-Kelvin. Even lower temperatures down to the

order of a few nano-Kelvin were achieved by a technique called evaporative

cooling [2]. which, in particular, made possible the first observation of Bose-

Einstein condensates (BECs) in 1995 [13] which ever since have been studied

intensively [14]. For high-resolution experiments, BECs have excellent prop-

erties: ultra-low temperature, high density, and a well-defined quantum state
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[15, 16, 17].

The manipulation of the transverse motion of an atomic beam to in-

crease its brightness, that is, the number of atoms per second and steradian

(atoms/sr·s), has been a subject of interest because a well-collimated atomic

beam can be a useful tool for atom optics applications. However, the main

obstacle comes from the fact that electrostatic potentials V (r) created up to

date are too weak compared with the typical kinetic energies of thermal atoms

[19]. In most cases, for example, the velocity spread of thermal atoms is on

the order of 500 m/s.

Consider an atom in a typical laboratory electric field of magnitude ∼ 103

V/m with a gradient of about 106 V/m2. The polarizability α of the atom,

which is defined by the relation between the induced dipole moment d of

the atom and the electric field E as d = αE, is typically on the order of

∼ 10−50 farad·m2 [20]. Therefore, we can just get a very small acceleration

of ∼ 10−15 m/s2 for thermal atoms. This shows that the interaction of a

ground state neutral atom with an electrostatic field can be neglected. Hence,

it is important to either develop the methods to increase V (r) to gain more

control of the atomic external (motional) state, or to make the interaction

stronger through controlling the atomic internal (electronic) state. The optical

bichromatic force is an example for the former case and its application to nano-

lithography has been developed in our group [21, 22]. As an example of the

latter case, we can change the internal state of the atoms by exciting them to

high principle quantum numbers (n > 15) called Rydberg states whose huge

dipole moments will naturally cause a stronger dipole interaction. This is the

4



method we use in our experiment.

In this chapter, several key concepts of the manipulation of atoms with

lasers will be presented.

1.2 Atom-Photon Interaction

The motion of an atom traversing a laser beam can be derived starting

from the Hamiltonian of the atomic system [2, 3].

H = HA + HAF (1.3)

where HA is the atomic Hamitonian and HAF describes the interaction between

the atom and the laser field. For a two-level atom of mass M with lower

electronic level |g〉, upper electronic level |e〉 and Bohr transition frequency

ω0, the atomic Hamiltonian can be expressed as [3]

HA =
p2

2M
+ h̄ω0 |e〉 〈e| (1.4)

Here p is the atomic center-of-mass momentum. The internal energy of the

lower state is set to zero. In the optical field region, the electric dipole approx-

imation is valid to describe the interaction between optical fields and atoms

[23], and we have [3]

HAF = −d · E(r, t) (1.5)

where d is the atomic dipole moment, and can be represented as

d = qr(|e〉 〈g|+ |g〉 〈e|) (1.6)

5



with the electric charge q. If we treat the field classically, it can be written in

the general form

E(r, t) = ek(r)E0(r) cos[ωt + φ(r)] (1.7)

where ω is the frequency of the field and φ the phase. k represents the po-

larization direction of the electric field in a spherical basis. If we choose the

quantization axis properly, k can be a single value 0 or ±1 for linear- or

σ±-circular polarized light. This is associated with the components in the

Cartesian space as follows: e0 = ez and e± = ∓ 1√
2
(ex ± iey). Using Eqs.(1.5)

-(1.7), the interaction Hamiltonian can be expressed as

HAL = h̄Ω cos(ωt + φ) { |e〉 〈g|+ |g〉 〈e| } (1.8)

Here we define the Rabi frequency Ω associated with the strength of a transi-

tion between two atomic states |g〉 and |e〉 by the expression [24]

h̄Ω = −qE0 〈e| ek · r |g〉 = −qE0 〈e| rk |g〉 (1.9)

The procedure for evaluating the matrix element 〈e| rk |g〉 in an atom with no

hyperfine structure such as helium is to first invoke the Wigner-Eckart theorem

[24, 25] to get

〈e| rk |g〉 = 〈nSLJMJ | rk |n′S ′L′J ′M ′
J〉

= (−1)J−MJ




J 1 J ′

−MJ k M ′
J



〈nSLJ‖ rk ‖n′S ′L′J ′〉 (1.10)

where (· · ·) is a Wigner 3j symbol. The reduced matrix element, 〈nSLJ‖ rk ‖n′S ′L′J ′〉,

6



can be evaluated in terms of a reduced matrix element in L representation as

[24, 25]

〈nSLJ‖ rk ‖n′S ′L′J ′〉 = δ(S, S ′)(−1)S+L′+J+1
√

(2J + 1)(2J ′ + 1)

×





L J S

−J ′ L′ 1





〈nL‖ rk ‖n′L′〉 (1.11)

where {· · ·} is a Wigner 6j symbol and δ(S, S ′) = 0 unless S = S ′. Substi-

tuting Eq.(1.11) into Eq.(1.10) leads to

〈e| rk |g〉 = (−1)2J+S+L′−MJ+1
√

(2J + 1)(2J ′ + 1)




J 1 J ′

−MJ k M ′
J




×





L J S

−J ′ L′ 1





〈nL‖ rk ‖n′L′〉 (1.12)

As a selection rule, k = M ′
J −MJ should be satisfied. The values for the

3j and 6j symbols can be found in Ref.[24]. In addition, the reduced matrix

element is related to the spontaneous emission rate Γ and wavelength λ of the

transition between the upper state |nL〉 and the lower state and |n′L′〉 as [24]

〈nL ‖rk‖n′L′〉 =
√

2L + 1

(
3λ3Γ

32π3cα

)1/2

δ(L′, L− 1) (1.13)
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where α
(
= 1

4πε0

e2

h̄c

)
is the fine structure constant and c the speed of light.

Using this result (1.13) and the electric field amplitude E0 =
√

2I
ε0c

(where I is

the intensity of the radiation field), the Rabi frequency can be obtained.

The saturation parameter s0 is also defined as [2]

s0 = I/Is =2Ω2
/

Γ2 (1.14)

where Is is the saturation intensity which is given in Eq.(1.16).

1.3 Excitation Scheme of Metastable Helium

The metastable helium (He∗) beam in our experiment is produced by a

DC glow discharge. Then the 23S1 metastable state can be regarded as the

ground state in the 3-level ladder scheme that we use because of its long

lifetime (∼ 8000 sec)

Figure 1.1 shows the excitation scheme of He∗ from the state 23S1 to the

Rydberg state 26S. The excitations are done with two linearly polarized laser

beams, a blue one (λ = 389 nm light, which is generated by an external

frequency-doubling cavity) for the first transition (23S1 → 33P2), and a red one

(λ = 796.762 ∼796.763 nm light). We use a two-step process for experimental

ease of light generation.

In order to see how the Rabi frequencies are affected by the polarizations

of the applied fields, we first consider the transition |1〉 → |2〉 with σ+-circular

polarized beams. In this configuration, the atoms are optically pumped into

the ground state sublevel M ′
J = 1. Therefore, the relevant transition is M ′

J =

8
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3

1

MJ=-1 0 +1

-2 +2

2
3
S1

3
3
P2

26S

389 nm

796.762

 ~796.763 nm

Figure 1.1: Excitation scheme of He∗ from the 23S1 metastable ground state to

the 26S Rydberg state bond by only ∼ 500 GHz using two linearly polarized

laser beams.

1 → MJ = 2 and we get

〈3P2MJ |rk| 2S1M
′
J〉 =

√
1/3 〈3P ‖rk‖ 2S〉 (1.15)

Substituting Eq.(1.15) into Eq.(1.9), and using Eqs.(1.13) and (1.14) leads

to

Is =
πhc

3λ3
Γ2 (1.16)

Here we use Γ2 as the spontaneous emission rate of level |2〉 (33P2) which

can be evaluated from Eq.(1.13) using the reduced matrix element 〈3P ‖rk‖ 2S〉 =

0.9 a0 ( a0 : Bohr radius). This gives the values Γ2 = 2π × 1.49 MHz, which

corresponds to a lifetime of τ2 = Γ−1
2 = 106.83 ns for the 33P2 state, and we get

9



Is = 3.31 mW/cm2 for the λ = 388.98 nm transition [2]. Thus the Rabi fre-

quency, Ω0 = Γ2

√
s/2 (Ω0 : Rabi frequency for the transition of |1〉 → |2〉 with

circular polarization beams), can be evaluated using Eq.(1.14) if the intensity

of the radiation field I for the transition is known.

For the linearly polarized case, the matrix elements [Eq. (1.12)] can be

expressed as

〈3P2MJ |rk| 2S1M
′
J〉 = β ·

√
1/3 〈3P ‖rk‖ 2S〉

︸ ︷︷ ︸
for σ+−pol.

,

β =





√
2/3 forMJ = M ′

J = 0

√
1/2 forMJ = M ′

J = ±1

(1.17)

There are three different contributions to the transition strengths from

the states having MJ = 0,±1 and the Rabi frequencies for these states can

be expressed by Ωl (0) =
√

2/3 Ω0 and Ωl (±1) =
√

1/2 Ω0 for MJ = 0

and MJ = ±1, respectively. But these values are approximately equal, and

we can thus take the average Rabi frequency for the linear polarization case

to be Ωl ≈ 0.75 Ω0. In principle, the evaluation of the Rabi frequencies

for the second excitation, |2〉 → |3〉, to the Rydberg states follows the same

procedure as explained the above. The reduced matrix element was calculated

〈26S ‖rk‖ 3P 〉 = 0.079 a0 and the lifetime of the state 26S is evaluated to be

∼ 40 µs.

10



1.4 Motivation and Outlook of Thesis

In 1981, T.Breeden and H.Metcalf [1] suggested that a non-uniform elec-

tric field can be used to decelerate a beam of highly excited thermal atoms,

whose electric dipole moments are large because they scale as the orbital ra-

dius (r ∼ n2). In van der Straten’s group, the intensity of the flux in their

experiment was increased by focusing the atoms with a magnetic hexapole lens

[26]. These results reveal that atoms in Rydberg states can also be focused

with inhomogeneous electro-static fields produced by a electrostatic hexapole

lens.

The purpose of this experiment is to manipulate the atomic trajectories of

helium atoms using the strong dipole interaction of the atoms with a moderate

electric field. A strong dipole interaction in a moderate electric field is based

on a large atomic dipole moment which is one of the exaggerated properties

of Rydberg atoms. In our system, Rydberg helium atoms are created driving

the optical two-photon transition from the metastable ground state to highly

excited Rydberg states. The energy level structure for an atom in a highly

excited state is dominated by the Stark interaction. Thus, understanding

the behavior of the Stark energy level is a prerequisite for carrying out this

experiment.

The properties and the Stark energy levels of Rydberg atoms are described

in Chapter 4. In order to increase the transition efficiency to the Rydberg

states we employ the Stimulated Raman Adiabatic Passage (STIRAP) tech-

nique, whose details are explained in Chapter 5. In addition, the method to

11



produce the 389 nm blue beam is presented in Chapter 2. The vacuum sys-

tems and the laser systems including the feedback systems used to stabilize

the laser frequencies are described in Chapter 3. Details on the construction

of the electrostatic lens and a brief numerical calculation associated with the

potential produced by the lens can be found in Chapter 6. A discussion of all

the experimental results will be the final Chapter 7.
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Chapter 2

LBO-based Second Harmonic Generation

(SHG)

2.1 Introduction

We employ the transitions 23S1 → 33P2 → nLJ (nLJ : Rydberg states)

of the three-level cascade scheme (see Figure 3.1) to excite metastable helium

atoms to Rydberg states. Therefore, a laser beam at λ = 389 nm for coupling

the two states 23S1 → 33P2 is required. As it is also pointed out in Section

5.4 in order to produce a highly efficient population transfer via the STIRAP

technique, this 389 nm beam must have a high enough Rabi frequency (≥ few

tens of MHz) and its optical frequency also needs to be stabilized. In our

system, we can achieve this by second harmonic generation (SHG) of a con-

tinuous wave Ti:Sapphire laser in an external enhancement cavity containing

a nonlinear LBO (LiB3O5) crystal. More thorough and elaborate discussion of

SHG can be found in [19, 27, 28, 29, 30, 31, 32, 33]. Therefore the theoretical

review of SHG in this thesis will be focused on the case of the LBO crystal
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used in this experiment instead of describing all different types of crystals.

The stabilization methods of our doubling cavity will be also discussed in this

chapter.

2.2 Second Harmonic Generation

The polarization P induced in a medium when a monochromatic plane

wave, E (k, ω) = eE exp {i (k · r− ωt)}, is applied can be expanded as

P (k, ω) = P(1) (k, ω) + P(2) (k, ω) + P(3) (k, ω) + · · · (2.1)

with

P(1) (k, ω) = ε0χ
(1) (k,−ω; ω) : E (k, ω) ,

P(2) (k, ω) = ε0χ
(2) (k,−2ω; ω, ω) : E (k, ω)E (k, ω) ,

P(3) (k, ω) = ε0χ
(3) (k,−3ω; ω, ω, ω) : E (k, ω)E (k, ω)E (k, ω) (2.2)

where χ(n) is the nth − order nonlinear susceptibility of the medium whose

dependence on the wave vector k can be neglected because its effect is practi-

cally very small. Therefore, using Einstein’s summation convention, the second

order polarization vector P(2)(ω) in a medium may be represented by

P
(2)
k = ε0χ

(2)
klmElEm (2.3)

χ
(2)
klm is a (3× 3× 3) third-rank tensor whose elements are restricted by the

spatial symmetry of the crystal structure [34]. It is especially convenient to

rewrite χ
(2)
klm in a contracted form, in which the two symmetric subscripts l
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and m are replaced by a single subscript j such that

xx → 1, yy → 2, zz → 3, yz → 4, zx → 5, xy → 6 (2.4)

Using this contracted matrix form, the so called 3× 6 Kleinman dij-tensor

[33, 35], Eq.(2.3) can be written as




Px

Py

Pz




= ε0




d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36




×




E2
x

E2
y

E2
z

2EyEz

2EzEx

2ExEy




(2.5)

For the majority of crystals, only a few of the dij coefficients have to be

known. In an LBO crystal, for example, symmetry requires that all the dij

vanish except d31, d32, and d33 [27] . Although we can calculate the second har-

monic polarization using the above equations, this is only true for infinitesimal

volume elements. That is to say that only the local second harmonic polar-

ization can be calculated according to Eqs.(2.3) and (2.5). On a macroscopic

scale, the total second harmonic polarization is the sum of the individual con-

tributions from all the infinitesimal elements of the crystal. For efficient second

harmonic generation, these infinitesimal contributions throughout the material
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must add coherently. Due to inevitable material dispersion, however, waves

of different frequencies propagate at different phase velocities. Consequently,

the problem of phase-matching between second harmonic fields generated at

different positions in a material should be considered.

For simplicity we consider the one-dimensional case in a material of length

L and assume a fundamental wave of the form [30]:

E(1) (x) = E(1) (0) · e−ikωx (2.6)

where kω is the wave vector for the optical frequency ω and the refractive index

nω, which is defined by kω = nωω/c ( c : speed of light in free space).

The second harmonic polarization can be calculated using Eq.(2.3), and the

susceptibility tensor χ(2) reduces to the one scalar coefficient deff .

P (2) (x) = 2deffE
(1) (x) E(1) (x) = 2deffE

(1) (0) E(1) (0) · e−2ikωx (2.7)

where deff is a function of the suitable element of the Kleinman d -tensor. For

example, this effective tensor element deff = d32 · cos ΘP can be used in an

LBO crystal (ΘP : phase matching angle) [27]. The polarization P (2)(x) acts

as a driving force in the Maxwell equations for E(2)(x) [32, 31, 33],

∂2

∂x2
E(2) −

(
n

c

)
∂2

∂t2
E(2) = µ

∂2

∂t2
P (2) (2.8)

Now E(2)(x), the solution of the wave equation (2.8), travels through the

material with frequency 2ω and wave vector k2ω. At an arbitrary position x′

in the material the second harmonic wave becomes

E(2) (x′) = E(2) (x) · e−ik2ω(x′−x)

∝
∣∣∣E(1) (0)

∣∣∣
2
e−ik2ωx′e−i(2kω−k2ω)x (2.9)
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Thus the total second harmonic field generated in a material for (0 < x < L)

can be calculated by integrating all contributions from E(2)(x′), and we finally

get [32]

E
(2)
total (x

′) ∝ e−ik2ωx′eiL∆k/2 · sin (L∆k/2)

∆k/2
(2.10)

with

∆k = k2ω − 2kω =
4π

λ
{n2ω − nω} (2.11)

where λ is the wavelength of the fundamental field.

From Eqs.(2.10) and (2.11), the coherence length Lc, which is a measure

of the maximum length of the nonlinear medium that is useful in producing

second harmonic waves, can be defined as

Lc =
λ

2 {n2ω − nω} (2.12)

For some typical values (λ = 780 nm , n2ω − nω = 10−2) we find a coherence

length of 39 µm. The proof of the coherence length effect is given in an ex-

periment by Maker et al [36]. The generated second harmonic beam intensity

I2ω can be calculated at the exit of the nonlinear medium (x = L) [37].

I2ω =
8π2d2

effI
2
ωL2

cε0n2
ωn2ω

· sin2 (L∆k/2)

(∆k/2)2 (2.13)

The maximum intensity of second harmonic light Imax
2ω is achieved at ∆k = 0,

that is, n2ω = nω. But there is always dispersion in a medium like LBO, and

the intensity I2ω decreases dramatically with ∆k (6= 0). Therefore, the key

to achieving high efficiency second harmonic frequency light is increasing the

coherence length Lc.
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2.2.1 Nonlinear Crystal

Consider an electromagnetic wave (propagation direction k) incident on

the surface of a birefringent nonlinear crystal. The polarization of the incident

wave can be split into two orthogonal components along two different axes of

the crystal. The Fresnel equation describes that these two waves see different

indices of refraction and thus propagate with different angles in the crystal, a

phenomenon referred to as birefringence [31]. The general method to find the

index of refraction for the different polarizations of a propagating wave is to

use a three dimensional ellipsoid [32],

x2

n2
x

+
y2

n2
y

+
z2

n2
z

= 1 (2.14)

where x, y, z are the principal axes of a crystal, and ni (i = x, y, z) is the index

of refraction along the axis i.

X

y

z

nx

ny

na

nb

nz

Index

ellipse

Index

ellipsoid

K

Figure 2.1: Index ellipsoid and Index ellipse.

18



For the case of the wave traveling in the direction of k, the plane perpen-

dicular to k going through the center of the ellipsoid intersects the ellipsoid

given in Eq.(2.14) and forms an ellipse, whose major and minor axes determine

two polarization directions in a crystal as shown in Figure 2.1. The length of

each axis represents the index of refraction along the axis, na and nb . Sup-

pose the ellipse has a cylindrical symmetry about the z -axis and the wave is

propagating along the z -axis. In this case the intersecting plane normal to

the direction of propagation (z -axis) will form a circle and the wave sees only

one refractive index. We call the propagating direction in which the refractive

index is independent of polarization the optical axis.

no

no

no

ne

ne

x

y

z Optic axis

n1

n2

n2

n2

n1

n1

n3

n3
n3x

y

z

Optic axis

( < <  )

(a) (b)

Figure 2.2: Refractive index surfaces. (a) uniaxial crystal (b) biaxial crystal

By the directional dependence of the refractive index, a crystal can be di-

vided into two classes - uniaxial and biaxial [32]. As shown in Figure 2.2,

there are always two different refractive indices seen by a propagating wave
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in any direction except one special direction (optical axis) of the wave vector.

This fact makes it possible for the wave propagating in the crystal to have

two different polarizations. For an uniaxial crystal, only the wave propagating

along the z-axis sees one index of refraction value. So there is only one opti-

cal axis [Figure 2.2(a)]. However, if there is no cylindrical symmetry axis as

shown in Figure 2.2(b), all three refractive indices are different (n1 < n2 < n3)

and the optical axis is along a direction other than any of the principal axes.

There are two optical axes, one in shown in Figure 2.2(b) and its symmetry

equivalent, in a biaxial crystal. In a birefringent crystal, the two waves whose

polarizations are orthogonal to each other have special names - ordinary and

extraordinary wave. The ordinary wave has a polarization perpendicular to

the principal plane formed by the optical axis and the propagation direction.

For the ordinary wave, the crystal has a constant index of refraction no. The

polarization of the extraordinary wave lies in the principal plane, and the re-

fractive index for the extraordinary wave ne is dependent on the angle between

the optical axis and the propagation direction k.

2.2.2 Phase Matching

In a birefringent crystal the refractive index depends on the direction of

the polarization of the wave propagating in the crystal. Using this property,

the index of refraction for the fundamental and second harmonic wave can be

matched in a nonlinear crystal [27]. Figure 2.3 shows the directional depen-

dence of the refractive index for a biaxial LBO crystal.

It is shown that in the XY (θ = 90o) and XZ (φ = 0, θ between Z and
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Z

optical axis
A

B

θ

φ

k

ω

2ω

X

Y

B

φ

k

nω n2ω
(e)

nω
(o)(e)

n2ω
(o)

(a) (b)

Figure 2.3: Refractive index surfaces for the birefringent LBO crystal. (a)

biaxial case and (b) negative uniaxial case (n(e) < n(o), θ = 90o)

optical axis) planes the crystal can be thought of as a negative uniaxial crystal

because of n(e) < n(o), whereas it shows the same behavior as a positive uniaxial

one in the Y Z (φ = 90o) and XZ(φ = 0, θ between X and optical axis) planes.

In positive birefringent crystals, for which n(e) > n(o) , the second harmonic

wave is polarized along the ordinary axis that gives the lower refractive index

n
(o)
2ω . At point A, one can realize the phase matching condition n

(o)
2ω = n(e)

ω (θ).

Therefore, two fundamental waves with the same polarization create a second

harmonic wave. This type of phase matching is called TYPE-I phase matching.

It is also possible to create a wave at the second harmonic frequency with two

fundamental waves having orthogonal polarizations to each other, referred

to as TYPE-II phase matching. In this case the phase matching condition

n
(o)
2ω = 1

2

[
n(o)

ω + n(e)
ω (θ)

]
must be satisfied, and it is not favorable to realize in

practice.
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In the case of a negative birefringent crystal (n(o) > n(e)) the polarization

of the second harmonic wave is along the extraordinary axis. At point B in

Figure 2.3(b), phase matching can be achieved for n
(e)
2ω (φ) = n(o)

ω , such that

the fundamental waves polarized along the ordinary axis n(o)
ω create a second

harmonic wave along the extraordinary axis. Figure 2.3(b) shows the negative

uniaxial phase matching condition in the case of θ = 90o. The phase matching

condition explained above is based on tuning the angles (θ, φ), a technique

referred to as critical phase matching, whereas non-critical phase matching is

based on accurate temperature control utilizing the temperature dependence

of refractive indices for some crystals.

θ

ρ

principal plane

optic
axis

A
A'

B

B'

kω,

k2ω,

kω,

k'ω,

k
'

2ω,

e-pol.

o-pol.

Figure 2.4: Critical phase matching in a uniaxial negative birefringent

crystal.[38]

As mentioned above, a biaxial LBO crystal can be thought of as a negative

uniaxial crystal when satisfying the phase matching condition at point B in

Figure 2.3(b). Therefore we may consider phase matching practically with

Figure 2.4 [38]. Suppose the second harmonic wave is generated at a point A′

22



when the fundamental wave kω,⊥ travels along the line AB. The polarization

of the second harmonic wave is perpendicular to the polarization of the fun-

damental wave in this configuration, the so-called Type-I phase matching [32].

Therefore, the second harmonic component k′2ω,‖ in the crystal will be polar-

ized along the principal plane and will also have a different phase velocity. In

order to achieve the phase matching condition, the angle θ can be adjusted by

rotating the crystal about an axis perpendicular to the principal plane. This

is called critical phase matching.

As obvious from the description of phase matching in a birefringent crys-

tal, there is a geometric walk-off of the second harmonic wave from the fun-

damental wave, specified by the walk-off angle ρ. In Eq.(2.13), the conversion

efficiency increases quadratically as a function of crystal length L. The effect

of the walk-off is a reduction of the spatial interaction length, which restricts

the intensity of the second harmonic wave.

2.2.3 SHG for a Focused Gaussian Beam

The intensity of the second harmonic wave is given in Eq.(2.13) for the

case of a plane wave. The equation shows that the intensity is proportional

to the square of the length of the crystal and to the square of the intensity of

the fundamental wave. In practice, the output mode of most laser systems has

a Gaussian transverse beam intensity profile, implying that a tightly focused

beam in the crystal will ensure the greatest power conversion efficiency due

to a higher power density. However, this also decreases the Rayleigh length,

which is defined by zR = πw0/λ ( w0: beam waist at the focal point, λ :
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wavelength )[31], and increases the divergence angle of the beam. For TYPE-I

phase matching, in addition, there is always a walk-off effect that limits the

spatial interaction length. The optimal second harmonic generation coefficient

γSHG in the case of TYPE-I phase matching under the consideration of these

effects was derived by Boyd and Kleinman in 1968 [35]:

γSHG =
P2ω

P 2
ω

=
128π2ω2d2

effkωL

c3n2
ωn2ω

· h (B, ξ) (2.15)

The factor h (B, ξ) is the Boyd-Kleinman focusing parameter that depends

on both the walk-off parameter B = ρwalk−off (Lkω)1/2 /2 and the focusing

parameter ξ = L/w2
0kω.

2.3 Selection of Nonlinear Crystal

When selecting a nonlinear crystal for frequency doubling of a 780 nm

Ti:Sapphire laser, the most important thing to consider is how to get the

highest possible conversion efficiency. The Eqs.(2.13) and (2.15) show that

a higher conversion efficiency can be achieved through higher power density,

longer crystal length, smaller phase mismatching, and larger nonlinear coeffi-

cients. However, there is always some limitation, for example, the nonlinear

crystal coefficients are intrinsic properties that cannot be altered and the max-

imum input power is limited by the damage threshold of the crystal.

In Type-I critical phase matching, the fundamental wave is incident on

a crystal with the phase matching angle. A small amount of divergence of
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the beam and a small deviation from phase matching angle cause a dramatic

reduction of the conversion efficiency. If the beam divergence angle is larger

than the acceptance angle of the crystal, only a fraction of the input beam is

involved in the doubling process. Among many different nonlinear crystals,

three candidates can be considered for frequency doubling of 778 nm light:

BBO (beta-barium borate), LBO (lithium tri-borate), and LiIO3 (lithium io-

date). More details on the optical properties of these crystals can be found

in [29, 40]. Of these three candidates, LBO has the highest damage threshold

(2.5 GW/cm2), the smallest walk-off angle (17 mrad), and the largest accep-

tance angle (4.3 mrad) at a wavelength of 780 nm. For Type-I critical phase

matching in the XY-plane ( see Figure 2.3 ) the nonlinear coefficient deff is

given by deff = d32 cos φ and φ = 33.73o. The dimension of our LBO crystal

is 3× 3× 18 mm. In this case, the maximum second harmonic efficiency can

be estimated to be γSHG = 1.6 × 10−4 W−1 and the estimated optical waist

size in the crystal is w0 = 31 µm. For a more detailed description of our LBO

crystal, see Ref.[29].

2.4 Performance of the SHG Cavity

The power of single pass second harmonic generation through the LBO

crystal is expected not to be enough for the STIRAP experiment because the

value of γSHG is only a small number on the order of 10−4 W−1. To achieve

higher second harmonic power, thus, a significantly higher fundamental power

is needed. A promising tool to increase the available fundamental power is
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an external enhancement resonant cavity (EEC). For a theoretical calculation

of the second harmonic output of an EEC, we can use the external resonator

SHG theory of Ashkin et al. [41]. For a given incident fundamental power Pω,

the circulating power Pc of the fundamental light on resonance in the doubling

cavity becomes [42]

Pc =
T1Pω(

1−√R1Rm

)2 (2.16)

Here, R1 and T1 (= 1 − R1) denote the reflectivity and the transmission

coefficient of the input coupling mirror M1, respectively [ see in Figure 2.5 ].

Rm is the reflectivity of the cavity except the input coupler M1.

M2

M3M4 LBO

M1

Figure 2.5: External Frequency Doubling Cavity
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Thus Rm can be thought of as the effective round trip loss caused by the

remaining cavity mirrors (M2 ∼M4) as well as losses within the LBO crystal.

From Eq. (2.16), the maximum circulating power Pc is achieved when the

reflectivity R1 is equal to the cavity loss Rm. This condition is referred to

as impedance matching to maximize the power inside the cavity. Now, if we

consider the generation of second harmonic light by the circulating power,

conversion losses caused by SHG itself should be included and the Eq.(2.16)

should be modified to [38, 42]

Pc =
T1Pω[

1−
√

R1Rm (1− γSHGPω)
]2 (2.17)

Thus, we can calculate the output power P2ω of SHG with respect to the

various losses and transmissions of the input coupler using the relation, P2ω =

γSHGP 2
c , as shown in Figure 2.6 [43].

The maximum total measured output power of our doubling cavity was ∼
450 mW. But if we filter the transmitted red component out of the total output,

a pure blue power P2ω of ∼ 200 mW was measured. This corresponds to total

losses of about 2 % from Figure 2.6. According to Ref.[43] possible sources

of losses (∼ 1 %) are reflections on the surface of the LBO crystal (0.2 %),

absorption and scattering due to impurities in the LBO crystal (0.7 %), and the

cavity mirrors (3×0.05 %). Therefore, most losses are caused by misalignment

of the cavity.
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2.5 External SHG Cavity

Our four-mirror ring resonator, shown in Figure 2.5, is mounted on an

aluminum based optical breadboard that is isolated from the dust free optical

table by a thick sheet of rubber. The fundamental beam is coupled into the

doubling cavity through a 1- inch diameter flat mirror M1, whose transmission

is about T = 1.8 ∼ 2.4 % at 778 nm. The other flat mirror M2 and the two

curved mirrors (M3, M4) are high-reflection (HR) coated for 778 nm. The

radius of curvature and the diameter of both curved mirrors is 150 mm and

12.7 mm, respectively. Furthermore, M4 has a transmission of more than 95 %

at 389 nm.

To be able to apply a feedback signal to lock the cavity, the small mirror

M2( 6 mm diameter) is mounted on a PZT (piezoelectric stack) whose max-
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imum displacement is 3.0 ± 1.5 µm with an applied voltage of 100 V. The

bandwidth is 250 kHz so that a fast actuation is possible. In addition to the

fast feedback signal a slower PZT is attached to the curved mirror M3 because

the fast PZT has a limited range of motion. This slow mirror M3 is driven by

a higher voltage (up to 1000 V) so that it is possible to compensate changes

in a larger range (∼ 4 µm) on a slower time scale (∼10 Hz). Therefore, we

can adjust the cavity length roughly to the resonant position and the fast cor-

rection signal can be applied to the cavity. The LBO crystal is mounted to

a copper block so that any heat generated by the high power laser beam can

be dissipated from the crystal. The copper block is attached to a stage that

allows to translate and to tilt the crystal. An anti-reflection coating on the

two optical facets gives a reflectivity of less than 0.25 % for the fundamental

beam and a transmission coefficient larger than 95 % for the second harmonic

beam. More practical information on how our doubling cavity was built can

be found in Ref.[29].

2.6 Alignment Procedure and Electronic Sta-

bilization

2.6.1 Cavity Alignment

We have learned how to align the frequency doubling cavity on the basis

of the instructional manual from Tekhnoscan [44], and I quote the manual in

this section because it describes a suitable procedure for our doubling cavity.
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First, the doubling cavity can be roughly aligned without scanning its length.

Thus all control electronics should be turned off.

The infrared laser beam (778 nm) is guided using mirror M (in Figure 2.7)

such that it comes through the center of the input coupler M1 and hits the

small mirror M2. Then, the beam from M2 is guided to the center of the

spherical mirror M3 by adjusting M2. Now, the control knobs of M3 are used

to make the beam pass through the LBO crystal and hit M4. The first step to

achieve a closed loop is to make the beam from M4 hit the same spot as the

first transmitted input beam on the input coupler M1. Second, M1 is adjusted

so that the transmitted incoming beam from mirror M and the reflected beam

from M1 that already ran one round trip in the cavity travel along the same

path. Further adjustment should be continued until an infrared flash appears

inside the doubling cavity. Once the light flash is observed, the ramp generator

to scan the cavity by applying a high voltage to the PZT2 is turned on [see in

Figure 2.8(b)].

After fine alignment of the mount for the LBO crystal a blue spot appears

in the output region. To take a part of the blue beam, which in turn hits a

photo diode detector (not shown in Figure 2.7), a beam splitter is inserted in

the output beam of the doubling cavity. The photo diode (PD) may easily be

saturated, so that a filter must be positioned in front of the PD. The output

cable of the PD is connected to an oscilloscope which should be synchronized

by the trigger signal (TTL) from the ramp generator. Further fine alignment of

the cavity mirrors (M1 ∼ M4 ) is required to optimize the signal and maximize

the height of the transmission peaks.
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Under certain conditions, the height of some of the peaks dominates all the

others [see Figure 2.9(a)]. The adjustment procedure with the mirrors and the

LBO mount needs to be continued until periodical high peaks with one or two

small peaks in between are observed. In the case of ideal alignment, only the

clear periodical high peaks without any small peak between them can be seen.

The small peaks can be further minimized by careful adjustment of the input

beam with mirror M in Figure 2.7. Furthermore, the correct polarization of

the input beam can be chosen by rotating a half wave-plate (HWP in Figure

2.7) such that the output of the doubling cavity is maximized.

2.6.2 Hänsch-Couillaud Method

Various perturbations can cause deviations of the doubling cavity from

resonance. To compensate for these deviations and to stabilize the resonance

cavity, Hänsch and Couillaud introduced a polarization spectroscopy method

[45] that is commonly referred to as the Hänsch-Couillaud method. Consider

an incident beam whose polarization axis is rotated with a HWP (see Figure

2.7) and forms an angle θ with the transmission axis (o − pol. axis in Figure

2.4) of the doubling cavity. Thus, the incident beam can be decomposed into

two orthogonal linearly polarized components: E‖ = E cos θ and E⊥ = E sin θ

(E : amplitude of the incident beam) are the electric field components parallel

and perpendicular to the transmission axis.

The perpendicular component E⊥ is simply reflected by the input coupler

M1 and serves as a reference, while the parallel component E‖ sees a cavity

of low loss and experiences a frequency-dependent phase shift in reflection
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depending on the direction of the cavity length deviation from the resonance

position. For example, if the cavity length changes from resonance to a shorter

length, the component that made one round trip in the cavity will be ahead

in phase by an amount (−δ) compared to the component that was directly

reflected from the input coupler. Similarly, a deviation to a longer cavity

length causes a delayed phase shift (+δ). Ideally, there is no reflection of

E‖ when the cavity becomes resonant [see in Figure 2.9 (b)] and the quarter

wave-plate (QWP in Figure 2.7) creates circularly polarized light just out of

the E⊥-component. Otherwise, the QWP generates elliptically polarized light

with a relative phase difference δ between the two reflected components. After

passing through the QWP and a polarization beam splitter (PBS) cube, we

get [45]

I1 − I2 = 2I cos θ sin θ
T1Rm sin δ

(1−Rm)2 + 4R sin2 (δ/2)
(2.18)

where I is the intensity of the incident beam, Ii (i = 1, 2) is the intensity

measured by the PD, and the quantities T1, Rm are defined in Eq.(2.16). The

signal of Eq.(2.18) can be used as an error signal to stabilize the cavity. The

produced error signal in our set-up is shown in Figure 2.9(c). Only a small

fraction of the incident beam needs to be reflected as a reference to create

the error signal, and thus, a very small θ ensures a higher intensity of the

circulating beam which gives a larger output of the cavity. After observing

the reflected beam shown in Figure 2.9(b), the error signal is generated by

rotating the QWP. The intensities at both photo diodes have to be balanced

with a polarizer to get the correct error signals.
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2.6.3 Electronic Stabilization

If the scan is turned off when the cavity is on resonance and the error

signal is zero, respectively, any perturbation will make the error signal deviate

from zero. To lock the cavity to the resonance position we use the feedback

electronics shown in Figure 2.8. The Hänsch-Couillaud error signal can be

applied to the PZT1 through a combination of integrator (I) and proportional

gain control (P) by switching S2 and S3 ON/OFF. Usually, slow deviations

(temperature drift) are controlled with the integrator whereas fast deviations

(mechanical, electrical noise) are compensated for with proportional feedback.

The reset switch SR is used for re-locking the cavity to resonance when the

PZT voltage of the error compensation approaches its limit value. In our

doubling cavity, we can maximize the output power by adjusting the LBO

crystal mount and the mirrors M2, M3 very carefully and slowly while the

locking system is operating.
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Chapter 3

Experimental Apparatus and Procedures

3.1 Introduction

Rydberg states of helium (4He) atoms can be produced by successive exci-

tation from the 11S0 ground state. The energy levels relevant to our experiment

are shown in Figure 3.1. With a lifetime of 8 × 103 s the first excited 23S1

state can be considered as the effective metastable ground state (He∗) on the

time scale of atomic experiments. Its lifetime is mainly determined by the

decay rate to the ground state via magnetic dipole transitions because elec-

tric dipole transitions are prohibited by the selection rules [46, 47]. Here the

selection rules say that the electron spin cannot change and that the change

in total orbital angular momentum has to be ∆L = ±1.

The direct optical transition from the ground state to the metastable state

is difficult due to a big internal energy of 19.8 eV, and thus He∗ atoms are

created by a DC electric discharge in our experiment.
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The transition from this effective ground state 23S1 to a Rydberg state nLJ

via the intermediate state 33P2 is achieved by a two-step laser excitation at

λ = 389 nm and λ = 780 − 796 nm, respectively. Once a beam of metastables

is produced, the created He∗ atoms should stay in the metastable state while

passing through the interaction and the detection regions. However, it was

experimentally observed that the loss of He∗ atoms caused from collisions with

the background gas is a severe problem when the pressure exceeds 10−5 Torr

for more than a few cm along the beam path [48]. Thus, a vacuum system

that guarantees a sufficiently long mean free path is required [38]. This chapter

describes the production of our He∗ beam, and both our vacuum and detection

systems. Furthermore, the stabilization of the laser systems will be discussed.

3.2 Vacuum Systems

All experiments are performed in a beam apparatus consisting of three

distinct vacuum chambers: a source chamber to produce He∗ atoms, an inter-

action chamber to excite these metastables to Rydberg states with different

laser beams, and a detection chamber to measure the spatial distribution of

the helium atoms. The sketches of our vacuum system are shown in Figure

3.2.

The source chamber is a welded aluminum cube of 30 cm side length, while

the interaction chamber is a similar cube with 25 cm sides. A skimmer and a

slit separate these two chambers. To handle the gas flow from the source cham-

ber to the detection chamber, a moderate size differential pumping system was
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constructed using three diffusion pumps: an Edwards 9B3 booster pump with

a pumping speed of 850 l/sec even at elevated pressure, a NRC/Varian HS-10

ten-inch diffusion pump (4200 l/sec), and a CVC/Bendix PBA-100A six-inch

diffusion pump (1500 l/sec). Especially, the Booster pump is positioned in

the source line because it operates efficiently at high flow rates and in the

high-pressure range (∼ 10−5 Torr). Two mechanical pumps back these three

diffusion pumps: a Welch Duo-seal 1398 (1500 l/min) and a Welch Duo-seal

1396 (2800 l/sec). The vacuum chamber can be isolated from the diffusion

pumps with gate valves: For the source and detection chambers CVC/VCSP-

61B six-inch gate valves (Gate-S and Gate-D in Figure 3.2) are used, and a

ten- inch gate valve (Gate-I, Model VRC 9457B-301) is used for the interac-

tion chamber. In addition, there is a gate valve to isolate the interaction and

the detection chambers.

In order to protect the vacuum chamber from oil contamination, the 6′′ and

the Booster pump are separated from the vacuum chamber by a water cooled

baffle which condenses the oil vapor so it can drop back into the diffusion

pump region. Cooling water is supplied to all the diffusion pumps and water

baffles. The pressure in the three different vacuum chambers is monitored

with ion gauges (Kurt J.Lesker G100K and G075K), and the foreline pressure

is also measured with Veeco thermocouple gauges. A fail safe system operates

and shuts off the diffusion pumps in one of the following cases: the foreline

pressure exceeds 50 mTorr, the speed of the cooling water flow falls below the

set point, or the temperature of the diffusion pump raises above the usual

operation point.
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The general procedure to achieve high vacuum in a system consisting of

mechanical roughing pumps and diffusion pumps is well described in many

vacuum books [49, 50, 51]. Usually, the diffusion pumps do not have to be

turned off when the vacuum chamber is brought to air if the gate valve is

closed. In Figure 3.2, for example, closing the gate valves Gate-B, Gate-

D, and roughing valve RD isolates the detection chamber so that only the

detection chamber can be vented to air while keeping all the diffusion pumps

on.

To evacuate the chamber, after the vent valve (not shown in Figure 3.2)

has been closed, the roughing valve RD is opened in order to first pump down

the chamber with the mechanical pump. Once the pressure drops below 100

mTorr the roughing valve RD is closed and the gate valve Gate-D is opened.

In experimental reality, any imperfection of the gate valve can cause undesired

airflow through a gap in the gate valve. Thus we turn off the diffusion pump

and have it cool down (∼ 3 hours) whenever we open the vacuum chamber. In

addition, all the roughing valves (RS, RI, RD) are closed during operation.

Source and interaction chamber are always brought to air together because

they are connected through a skimmer.

The procedure to vent the chambers is the following: First, both chambers

are isolated from the detection chamber by closing the gate valve Gate-B,

and both the booster pump and the 10′′-diffusion pump are turned off and

allowed to cool down for about 3 hours. Second, closing the valves FS, V1,

and V2 (FI: always open) ensures isolation from both mechanical pumps and

the detection vacuum loop. Third, the chambers are vented to air. In order
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to pump down again, after closing the vent valve, FS and V1 are opened

simultaneously but slowly in order to prevent a sudden change of pressure

which can cause serious damage to the glass tube in the source chamber.

When the foreline pressure reaches 100 mTorr, the diffusion pumps can be

turned on. After the pressure in the interaction chamber falls below 10−5

Torr, the gate valve Gate-B can be opened so that the system is also pumped

down through the detection loop. The achieved pressures in our system are

10−5 Torr, 2 × 10−6 Torr, and 8 × 10−7 Torr for the source, interaction, and

detection chambers, respectively.

3.2.1 Metastable Helium Source

The source chamber contains a Pyrex glass tube and a skimmer, as shown

in Figure 3.3. The design of our helium source is based on that of Fahey et

al. [52]. As shown in Figure 3.3, helium gas is guided from the He tank into a

Pyrex glass tube inside the source chamber through plastic tubing. The inlet

pressure of the helium flow into the glass tube is about 50 Torr. Both sides of

the glass tube are sealed (applying Aremco Inc. Ceramabond 503) with pieces

machined out of a rod (diameter 1′′) of boron-nitride (BN), which combines

poor electrical conductivity with good thermal conductivity. There is a small

size nozzle (diameter 150 µm, length 1 mm) in the front side BN seal which

is cooled by liquid nitrogen in order to reduce the initial transverse velocity

spread of the helium atoms flowing through the nozzle by about a factor of

two as compared to the water-cooled case [53].

A thin glass tube (diameter 5 mm) is fed through the back side seal so that
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a tungsten needle can be positioned along the axis of the glass tube such that

the tip of the needle is located close (∼ 1 mm) to the nozzle. Approximately

1 ∼ 2 cm downstream from the nozzle, there is a skimmer which is connected

to the wall separating the source chamber from the interaction chamber with

a bellows. The skimmer has a 1 mm hole and is mounted on a stage that is

adjustable in three dimensions.

The ignition procedure of the discharge is started by allowing helium gas
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into the glass tube by opening the valves V2 and V1. Valve V2 should always

be opened ahead of valve V1 in order to protect the He tank from contami-

nation. By adjusting the micro-valve Vp the flow of helium is set to around

50 ∼ 70 Torr on the pressure gauge. A pressure above 200 Torr can cause

serious damage to the glass tube. Thus, it is recommended to close both valve

V3 and V4 before the pressure gauge shows a safe value below 200 Torr. Once

that is the case, the micro-valve Vp is adjusted further until the inlet pressure

reaches an adequate value. Now, valve V4 can be opened. The purpose of

the valve V3 is to get rid of the gas in the plastic tube region (He tank ∼
glass tube) quickly through the source chamber rather than through the noz-

zle of the glass tube. Therefore, valve V3 should always be closed except when

pumping out the gas from the plastic tubing.

In practice, it takes about 10 min until the helium flow is stabilized in

the system. After helium gas is supplied into the glass tube through valve

V4, the pressure difference between the inside (∼ 50 Torr) and the outside

(∼ 10−5 Torr) of the glass tube produces a supersonic expansion of the helium

gas through the boron-nitride nozzle. Now a voltage of (−3 kV) is applied

to the tungsten needle. The voltage difference between the needle and the

skimmer, which is at ground potential, creates an electric field. Usually, the

DC discharge starts. The discharge current can be varied up to (20 mA) on

the power supply. If a higher current is applied, the ballast resistor (100 kΩ,

20 W, Model No. OHMITE B20J100K) that is used to ensure stable operation

can be burned. The higher the current, the faster is the velocity of the He

atoms in the beam [53]. The optimum current can be found by maximizing the
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source efficiency on the detectors (ion signal or phosphor screen), it is around

8 ∼ 10 mA in our source.

Sometimes the discharge does not come out through the nozzle and stays

inside the glass tube. This usually happens if the pressure inside the glass

tube is too low. In order to solve this problem, the inlet pressure can be

slightly increased by adjusting the micro-valve Vp (up to ∼ 100 Torr). Once

the discharge comes out, the inlet pressure has to be reduced (∼ 50 Torr)

because the metastable He atoms get quenched in higher pressure.

If the discharge still does not run, several things should be checked: First,

if the back-up pressure of the booster pump decreases because there is no

gas flow from the source chamber through the nozzle one can suspect that

the nozzle is blocked. In this case, the inlet pressure would also be higher

than usual. Second, the ballast resistor could have been burned. As long as

the resistor works, one can see the discharge glow inside the glass tube if the

inlet pressure is decreased (< 50 Torr). In general, keeping the nozzle and

the needle clean will ensure better running of the discharge. In addition, the

position of the skimmer can be optimized by aligning the skimmer stage and

maximizing the brightness of the atomic beam on the phosphor screen. Under

steady running conditions, the source produced 1014 metastables/sec/sr [54].

Longitudinal Velocity Distribution

A time of flight (TOF) measurement was done by Mary.J.Bellanca [54] us-

ing a chopper inside the vacuum system. A He-Ne laser beam hit a photodiode

located just behind the chopper wheel and thus generated a trigger signal for
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the TOF measurement. The detector was positioned about (2 m) downstream

from the nozzle of the glass tube. The current signal from the Keithley 486

Pico-ammeter was converted to a voltage signal with a 100 kΩ resistor, and

then subsequently amplified by a SR560 Low-Noise Pre-Amplifier. The signal

shown in Figure 3.4 was taken with a Tek210 Digital Oscilloscope. The aver-

age longitudinal velocity and the spread ∆v were calculated from a Gaussian

fit (dotted line). The first peak is created by UV-photons. Its area is about

35% of the second peak, which is generated by metastable helium atoms. It

was observed that a higher inlet pressure increases the area of the first peak

and the amount of UV-photons, respectively.
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3.2.2 Interaction Chamber

The interaction chamber contains two field plates, an ion detector, and

an electrostatic lens which is located (∼ 4 cm) downstream from the plates

(Figure 3.5). In addition, a slit is placed (∼ 5 cm) up-stream from the field

plates (not shown in Figure 3.5, see Figure 3.2(b)). Its position along the

transverse direction can be altered from outside the vacuum chamber with a

flexible feed-through.

Both sides of the interaction chamber contain a window, each with a diam-

eter of 2 inches, so that our exciting laser beams can traverse the atomic beam
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orthogonally. The windows are anti-reflection coated for both 389 and 795

nm to minimize intensity losses. A number of BNC connectors are embedded

in the vacuum blank-offs of the interaction chamber for supplying voltages

to the electrostatic lens, the upper- and lower- field plates, and the MCPs

(micro-channel plates) of the ion detector. The anode of the ion detector is

also connected to a scope with a BNC cable. Details about our ion detector

will be discussed in the next section.

3.2.3 Detection Systems

In order to observe the ion signal produced by the Rydberg atoms and the

spatial distribution of the atomic beam we employ three different detection

systems: an ion detector, a phosphor screen detector, and a stainless steel

detector. All detectors are based on the combination of MCPs with an anode or

a phosphor screen. MCPs are thin discs of lead glass which contain many tube-

shaped channels that serve as multiplier tubes. The MCP we use (BURLE

Model MCP 25/12/12 D 40:1) has a maximum electron multiplication factor

of 4× 103 for the maximum bias voltage (1000 V).

Ion Detector

Atoms that were excited to the Rydberg state can be ionized when colliding

with the background gas in the vacuum chamber. The produced ions will be

attracted towards the MCP because the front side of the MCP is at a potential

of −2000 V as shown in Figure 3.6(a). When the ions hit the MCP, an electron

shower is created. These electrons get accelerated to the second MCP by the
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potential difference, and the amplification process repeats. The MCP pair

in our system has a combined gain of ∼ 106. An anode collects the electrons

produced by the second MCP so that a current can be measured in the circuit.

Subsequently, the current signal passes through an amplification circuit and

is converted to a voltage signal. The voltage signal which is proportional to

the number of produced ions can be observed with an oscilloscope (Tektronix,

Model TDK210) if the atomic transition to the Rydberg state is on resonance

during the scan of the electric field. The signal shown in Figure 3.6(b) was

observed for the transition to the 26S Stark level at an electric field of 30 V/cm

while scanning the lower field plate.

Phosphor Screen Detector (PSD)

The PSD provides us with a real time image of the spatial distribution of

He∗ atoms because the intensity of the fluorescence of the screen is related to

the flux of the atoms. A CCD camera (Dage-MTI CCD100) is used to monitor

the phosphor screen through a flanged window (Figure 3.7). The PSD thus

enables us to optimize our alignment: We can observe the beam height and

direction, we can maximize the atomic beam flux by adjusting the skimmer,

and we can set the 389 nm laser frequency because the radiative pushing effect

can only be observed if the frequency scans the correct transition. However,

the sensitivity of the PSD to the atomic flux is non-linear and non-uniform

(measured in Ref.[21]) because the areas that are exposed to a higher flux age

faster. We can even observe completely burned spots in the more frequently

exposed area of the surface of the phosphor screen (Model P20).
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Figure 3.7: (a) Phosphor Screen Detector (PSD) for detection of spatial dis-

tribution of atomic beam detection, (b) Typical image from CCD at Phosphor

(1700 V), MCP (−900 V), Inlet pressure (50 Torr)
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Stainless Steel Detector (SSD)

To obtain an absolute measurement of the atomic beam profile, a stainless

steel detector is a better choice. A top view of our SSD detector and a typical

signal created by our He∗ beam are shown in Figure 3.8. After passing trough

the slit (∼ 300 µm), the He∗ atoms strike the stainless steel plate where elec-

trons can be liberated with an efficiency of 70% of [56], because the energy of

the metastable atoms (∼ 20 eV ) is larger than the work function of the metal

(4.7 ∼ 5.6 eV) [55]. By contrast, the kinetic energy (0.05 eV at 1600 m/s) of

the ground state atoms is too low to overcome the work function of the metal.

Once the electrons are liberated they are accelerated towards the MCP by the

potential difference between the stainless steel plate and the MCP. A Keithley

Model 486 picoammeter measures the electron current at the anode. The slit

position can be altered with a linear motion vacuum feedthrough (Huntington

Mechanical Laboratories, Inc. 2 inch feedthrough, Model L-2111-2), so that a

position dependent current signal can be measured. Thus, an accurate trans-

verse beam profile can be recorded because the current is proportional to the

flux of the He∗ atoms. Figure 3.8(b) shows such a profile.
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measured by a Keithley Model 486 pico-ammeter
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3.3 The Laser Systems

Figure 3.1 shows the relevant transitions for the production of Rydberg

atoms. Two independent Ti:Sapphire laser systems provide the light for the

pump (λ = 389 nm) and the Stokes (λ785 − 815 nm) beam. The 389 nm

light is generated by frequency doubling the output of a Schwartz Electro-

Optics (SEO) Ti:Sapphire laser, which is pumped by a diode-pumped, fre-

quency doubled Nd:YVO4 laser (Coherent Model Verdi V10) with up to 10.5

W output power at 532 nm. The red light is provided from a TekhnoScan

Ti:Sapphire laser (Model TIS-SF-07e) which is pumped by an Argon-Ion laser

(Coherent Model Innova 300). To stabilize the laser frequencies, three differ-

ent kinds of locking system are used: the Pound-Drever-Hall technique [57],

the Hänsch-Couillaud technique [45], and Saturation Absorption Spectroscopy

(SAS) [58, 73].

3.3.1 Blue (λ = 389 nm) Laser System

The schematics of the blue laser system are presented in Figure 3.9 and

Figure 3.10. A ring configuration is chosen in order to avoid the spatial hole

burning effect. In a standing wave geometry, spatial hole burning results in

power losses because the molecules in the active region do not contribute to

the build-up of the laser field if they are positioned in the nodes of the standing

wave. In order to enforce uni-directional operation, an optical diode was placed

(OD in Figure 3.9) in the ring cavity. In addition, stable single-frequency

operation is obtained by using several mode selective elements, namely a bire-
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fringent filter and an etalon. In our laser system, one can tune the etalon (E)

to change the wavelength in a relatively small range (10−4 ∼ 10−5 nm). At a

wavelength of 778 nm, a change of 10−3 nm corresponds to roughly 500 MHz

in frequency. If a larger amount of adjustment is required the birefringent

filter can be tuned. When all elements are properly aligned the output power

of our laser reaches up to 3.1 W in single mode operation at 777.8 nm.

The locking system to stabilize the laser frequency consists of three main

parts. In this section, the stabilization electronics for Pound-Drever-Hall

(PDH) and Saturation Absorption Spectroscopy (SAS) are explained. Hänsch-

Couillaud method is presented in Section 2.6.1 and 2.6.2.

Pound-Drever-Hall Locking

The SEO Ti:Sapphire laser is first stabilized employing the Pound-Drever-

Hall locking scheme [57]. Therefore, a part of the main laser beam is split

off with a beam splitter and further divided into three beams. One goes to a

wavemeter that allows to coarsely monitor the frequency of the laser, one is

sent to a reference Fabry-Perot cavity to monitor the mode structure of the

laser, and the third is used to generate the Pound-Drever-Hall error signal

as follows: An electro-optical modulator (EOM) modulates the phase of the

central carrier frequency ωc of the laser with the frequency Ω (= 64 MHz) and

produces two sidebands at ωc±Ω. The radio frequency (= 64 MHz) is supplied

to the EOM from the oscillator (RF) via an RF-amplifier (RA) [Figure 3.10].

The modulated beam is then incident on the Fabry-Perot (FP) cavity.

Two photodetectors detectors (fast Si PIN photodetector, PD1 and PD2)
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are used to measure both the transmission through the FP cavity and the

reflection from the cavity. The reflected signal from PD1 passes through an

RF amplifier (Mini-Circuits ZFL500LN) and is compared to the RF input at

64 MHz in a mixer (Mini-circuits ZEM2B) which serves as a phase detector.

When the carrier frequency is resonant to one of the FP cavity modes, there is

no reflection at the carrier frequency and the phase-modulated sidebands have

equally reflected amplitudes but opposite phases. Thus, the two sidebands

interfere destructively and the signal on PD1 will be zero.

When the carrier frequency is slightly detuned from cavity resonance, the

amplitude of the reflected beam depends on where the resonance is. The two

sidebands experience a different amount of reflection so that the beating signal

on PD1 will be non-zero even if their phases are still opposite. The PD1

signal is measured with a phase sensitive lock-in detection system consisting

of amplifier, mixer, reference signal, phase shifter, and integrator or low pass

filter. Lock-in detection is used to measure both magnitude and phase of

the signal by extracting only the part that is at the same frequency as the

reference frequency out of the noise. The output of the mixer that multiplies

the sinusoidal PD1 signal with the sinusoidal reference signal of frequency Ω,

is a signal that contains two frequencies: the sum and the difference of the two

multiplied frequencies of the signals. There can be a phase difference between

the PD1 signal and the reference signal because of the response characteristics

of the EOM and the cavity.

The phase shifter compensates for this phase difference. If the two incom-

ing frequencies are exactly the same, the mixer produces both a DC (zero-
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Figure 3.11: Pound-Drever-Hall (PDH) signals: error signal (top) and trans-

mission signal (bottom)

frequency) and an AC (2Ω-frequency) output. An integrator or low-pass filter

will only let the DC-component pass which is then used as an error signal for

the feedback loop. Both error and transmission signal are shown in Figure

3.11. The error signal is fed to a low-noise amplifier, and the gain and cut-off

frequency are optimized. After choosing the correct polarity (+/−) and DC-

offset, the error signal is separately sent through a two stage ( f3dB = 2 Hz

and 0.5 Hz ) integral and a proportional loop and afterwards recombined in
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a summing junction. The output of the summing junction is amplified with

a high voltage amplifier and applied to PZT1 [in Figures 3.9 and 3.10] in

order to adjust the laser cavity length back to resonance with the small mirror

attached to PZT1.

Saturation Absorption Spectroscopy (SAS)

While the laser frequency can be stabilized on a short time scale when

locked to a Fabry-Perot cavity, a small and comparably slow temperature drift

can change the cavity length without any compensation. Therefore the FP

cavity should also be locked to a stable reference in order to achieve long-term

stability. Since we want to drive the transition 23S1 → 33P2 at λ = 389 nm

with the beam produced by second harmonic generation (see Chapter 2) the

best reference is this transition itself. Employing the saturation absorption

spectroscopy (SAS) technique, we thus lock the PDH cavity to the atomic

transition. Therefore, a polarization beam splitter cube (PBS) is used to take

a small part of the output of the frequency-doubling cavity for the SAS setup.

The beam is split into two weak beams (probe and reference) and a strong

counterpropagating pump beam that overlaps with the probe beam in the He-

cell. The strong pump beam saturates the transition 23S1 → 33P2 at λ = 389

nm so that the pump beam is weakly absorbed resulting in a sharp dip (called

Lamb dip) in the Doppler absorption profile. In our SAS setup, the saturation

parameter of the pump beam is s ∼ 10 (s = I/Is, Is = 3.31 mW/cm2, [2]),

while that for the probe beam is s ∼ 1. The balance of the intensities of the

probe and the reference beams at the photodiode detector (PD4) is adjusted
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(a)

(b)

Figure 3.12: Saturated absorption spectroscopy (SAS) signals for 23S1 → 33P2

transition at λ = 389 nm. (a) without locking the laser to the PDH error signal,

(b) with locking the laser to the PDH error signal
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with a variable filter (F) as represented in Figure 3.9. The half-waveplate

(HWP4 in Figure 3.9) can be used to adjust the intensities of the pump and

the probe beams. An optical isolator was positioned right after the SAS setup

to avoid feedback to the SAS setup.

In order to produce the error signal, the absorption signal from PD4 is

fed to a lock-in amplifier (SRS Model SR510) and modulated by a 1 kHz

reference signal. This reference signal also modulates the PDH cavity through

the summing box Σ2 when the switch S4 is closed. The mechanism to generate

the DC error signal with the lock-in detection has already been explained in

the section on the generation of the PDH error signal. The absorption and the

error signal are shown in Figure 3.13(b). The error signal was taken at a slow

scan rate (≤ 1Hz). After aligning the SAS setup we need to find the correct

transition peaks.

Locking the blue laser to the correct transition

The first step to move the laser frequency to the correct transition is to tune

the birefringent filter (BF) and the etalon (E) [see Figure 3.9]. If the frequency

is tuned to the correct value, the fluorescence in the RF-discharged He-cell can

be observed. In our system, we used to observe the fluorescence at the values

(777.9505 - 777.9515 nm) with the wavemeter (WA-1500). In order to find

the absorption peak, the laser cavity is scanned with the function generator

(20 Hz) by closing the switch S3 and adjusting the DC-offset (Figure 3.10).

Once the absorption signal appears as shown in Figure 3.12(a), the cavity has

to be tuned towards the higher wavelength side until one cannot see another
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(a)

(b)

Figure 3.13: SAS signals for (a) 23S1 → 33P2 transition and crossover between

33P2 and 33P1 (b)23S1 → 33P2 transition and error signal
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absorption signal when further increasing the wavelength. This is the case

because the frequency of the correct transition (23S1 → 33P2) is the lowest

frequency among all transitions (23S1 → 33PJ , J = 0,1,2) as shown in Figure

3.1. This procedure should be done without locking the laser to the PDH

cavity, but with the frequency-doubling cavity locked. If the doubling cavity

unlocks while the laser cavity is scanned, it can be relocked with the reset

switch of the integrator.

The next step of the whole locking procedure is to lock the laser cavity

to the PDH cavity as follows: First, the switch S3 is opened after observing

the peak shown in Figure 3.12(a). The laser cavity will stay close to the

correct transition peak. Second, the scan of the PDH cavity is turned off by

switching off the internal function generator in the summing box Σ2 (Figure

3.10). Third, the switches S1 and S2 are closed and the gain of the two-

stage integrator is adjusted simultaneously until the transmission signal from

PD2 jumps up to the former height of the transmission peaks on the scope

screen. Subsequently, the locking must be optimized in order to minimize

the laser line-width by minimizing the deviation of the locking signal from

the resonance position (zero). This is done by optimizing the integral and

proportional gains.

After the laser cavity has been locked to the PDH cavity, the next step is

to lock the PDH cavity to the atomic transition, namely the SAS. The laser

frequency should already be very close to the correct transition. Switch S6

(Figure 3.10) is set to scan and switch S5 is closed, then the DC-offset of

the summing box Σ2 is changed until the absorption signal shown in Figure
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3.12(b) can be observed again. If the gain G5 is increased the crossover peak

23S1 → 33P2 and 33P1, which is 330 MHz apart from the transition ( 23S1 →
33P2 ), can be observed as shown in Figure 3.13(a).

3.3.2 Red (λ = 780− 796 nm) Laser System

The red laser system is also based on a Ti:Sapphire laser (Tekhnoscan

Model TIS-SF-07e), but is pumped by an Argon-Ion laser (Coherent Innova

310). The output of this laser is around 1W at a pump power of 10 W. The

relatively low power compared to the blue laser system that is pumped with the

same amount of power might be caused by several factors: First, the pumping

efficiency might be lower because the spectral and the mode quality of the

argon-ion laser are not as good as those of the Verdi V10. Second, the ring

geometry is different, as the red laser system contains more mirrors and mode-

selective elements which can reduce the output power. Third, the quality of

Ti:Sapphire crystal is also not as good as that in the blue laser system.

The Tekhnoscan laser system includes an electronic control unit which

enables us to control the frequency selecting elements without opening the

cavity. Furthermore, part of the output beam is sent to the photodiode PD1

to track intensity variations (Figure 3.14). The error signal is produced from

the PD1 signal and is fed to PZT1, PZT2, and PZT3 to keep the cavity

at the length that yields the same intensity. Thus, the laser cavity is locked

to the intensity peak measured by PD1. In addition, PZT4 was added to

the small mirror to gain fast control of the laser cavity. The same feedback
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method as in the blue laser system is used to produce a PDH error signal, and

the laser cavity can be locked to the PDH cavity by applying the error signal

to PZT4. Therefore, either intensity or frequency locking can be used in this

laser system.
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Chapter 4

Rydberg Atoms

4.1 Introduction

Rydberg atoms are atoms with a single valence electron in highly excited

electronic states, named after Swedish physicist Johannes R. Rydberg (1854 -

1919). Their unique properties, e.g. their orbital radius which scales with the

square of the principal quantum number n and thus may extend over more than

thousands of Bohr radii, make it possible to investigate many atomic properties

that cannot be observed with ground state atoms [60, 61]. Furthermore, they

can serve as very sensitive field probes that enable us to resolve extremely small

perturbations experimentally. Extensive reviews of many aspects of Rydberg

atoms are given in Ref. [61].

The goal of this chapter is to describe the advantage of using Rydberg

atoms in our experiment. With this in mind the general properties of Rydberg

atoms will be briefly reviewed. The effect of external electric fields on Rydberg

atoms will be described since the calculation of the Stark shifted energy levels
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is important in this experiment

4.2 General Properties of Rydberg Atoms

The role of Rydberg atoms in atomic spectroscopy is described by White

[62]. The wavelength for the Balmer series of atomic hydrogen (n > 2) is given

by the formula [61]:

λ =
bn2

n2 − 4
(4.1)

where b = 3645.6
o

A. This formula gives the wavelengths of the transitions

from states with high n to the state with principal quantum number n = 2.

The significance of the frequency of a transition was realized by Hartley [63],

and Eq.(4.1) can be expressed in terms of the wavenumber ν, the inverse of

the wavelength in vacuum [61],

ν =
(

1

4b

) (
1

4
− 1

n2

)
(4.2)

In 1890, Rydberg classified the different series of alkali atoms into sharp(s),

principal(p), and diffuse(d) series [64]. The wavenumber of the different series

can be expressed as [60, 61].

νl = ν∞l − Ry

(n− δl)
2 for l = s, p, d (4.3)

where the constants ν∞l and δl are the series limit and the quantum defect,

respectively. The constant Ry is called Rydberg constant because it was Ryd-

berg who first realized that this constant is a universal constant for all different

kinds of atoms. In addition, Rydberg observed that the wavenumbers of lines
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connecting the s and p series, for example, are given by [61, 64]

± ν = Ry

[
1

(m− δs)
2 −

1

(n− δp)
2

]
(4.4)

where the (+) sign and n represent a sharp series, while the (-) sign and m

describe a principal series.

The physical significance of highly excited states became clear when Bohr

proposed his model of the hydrogen atom in 1913 [62]. According to the Bohr

theory, an electron of charge −e and mass me in a circular orbit of radius

r around a positive charge Ze follows Newton’s law. Combining this with

the quantization of angular momentum, mevr = nh̄ ( h̄ : Planck’s constant

divided by 2π ), yields [61]

r =
n2h̄2

Ze2mek
(4.5)

with k = 1/4πεo , εo being the permittivity of free space. For the Hydrogen

atom the lowest orbit (n = 1) has been assigned a special name, Bohr radius,

and a symbol a0. The energy En of a state n is obtained by adding its kinetic

and potential energies [61],

En = −k2Z2e4me

2n2h̄2 = −mec
2α2Z2

2n2
(4.6)

where α is the fine structure constant. Since the binding energy is negative,

the electron is bound to the proton. The allowed transition frequencies are the

differences in the energies given in the above Eq.(4.6) divided by Planck’s con-

stant. Comparing this result to the Rydberg formula which is the generalized

form of Eq.(4.4) , Bohr showed that the Rydberg constant could be expressed

as

Ry =
k2e4me

2h̄2 =
mec

2α2

2
(4.7)
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To include the effect of nuclear motion, the electron mass me needs to be

replaced by me(1+me/M) ( M : nuclear mass ) because the Rydberg constant

Ry depends on the mass of the nucleus for a given atom. The expression given

in Eq.(4.7) is valid for a nucleus of infinite mass.

Property Formula n-dependence

Binding energy En = −Ry/(n− δl)
2 n−2

Energy difference En − En−1 n−3

Orbital radius 〈r〉 ∼ 1
2
[3(n− δl)

2 − l(l + 1)] n2

Geometric cross section π 〈r〉2 n4

Dipole moment 〈n, l |er|n, l + 1〉 n2

Polarizability 2e2 ∑
n6=n′

|〈nlm|z|n′l′m′〉|2
Enlm−En′l′m′

n7

Radiative lifetime
(

e2

3h̄c3πε0

∑l=l′±1
n<n′

lmax

2l′+1
ω3 |〈n′l′ |r|nl〉|2

)−1
n3

Fine structure n−3

Table 4.1: General properties of Rydberg Atoms [60, 61]

As given by the equations (4.5) and (4.6) the energy decreases as 1/n2 and

the orbital radius increases as n2. In order to realize the importance of these
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effects, consider an atom in a relatively low Rydberg state n = 10 and compare

it to a ground state atom. An hydrogen atom in the ground state is bound by

Ry and has an orbital radius a0. In contrast, the binding energy of the Rydberg

atom energy is given by 0.01Ry and the orbital radius corresponds to 100 Bohr

radii (100a0). As a consequence, the valence electron in a Rydberg atom is

in a loosely bound orbit. Thus, an opportunity to study the properties of an

atom in a relatively strong field is provided because Rydberg atoms can be

easily ionized even by small electric fields. The other unique aspect of Rydberg

states comes from their relatively large orbit. The electric dipole moment is

proportional to the size of orbital radius, so that Rydberg atoms have both

a very large dipole moment and a huge polarizability. Due to this bizarre

property, Rydberg atoms are very sensitive to external electric fields. Table

4.1 shows several selected properties of Rydberg atoms and their dependence

on the principal quantum number n.

4.3 Schrödinger Equation for Hydrogen Atoms

For developing Rydberg atom wave functions, it is a good starting point to

review general features of the hydrogen atom. The Schrodinger equation for

the electron of a hydrogen atom, written in atomic units [see Appendix A.1],

is [60, 65] (
−∇

2

2
− 1

r

)
Ψ (r) = EΨ (r) (4.8)

From now on, atomic units are used unless otherwise mentioned. In atomic

units e = h̄ = m = 1 ( m : electron mass), α = 1/137 and αc = 1 ( α : fine
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structure constant), and also Z = k = 1 , where k = 1/4πε0. In a spherical

coordinate system ∇2 can be expressed as

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
(4.9)

If we separate the wave function Ψ (r) into a radial and an angular part,

Ψ (r) = Ylm (θ, φ)
f (En, l, r)

r
(4.10)

then the solutions of the angular part are the spherical harmonics Ylm (θ, φ)

defined in terms of the associated Legendre polynomials Pm
l (cos θ)

Ylm (θ, φ) =

√√√√(l −m)!

(l + m)!

2l + 1

4π
Pm

l (cos θ) eimφ (4.11)

where l is a non-negative integer and m takes integral values between −l and

l. The radial equation, which gives the energy values, can be written by

(
−1

2

d2

dr2
− 1

r
+

l (l + 1)

2r2

)
f (En, l, r) = Ef (En, l, r) (4.12)

The solutions can be expressed in terms of associated Laguerre polynomials

L2l+1
n+l [65, 66],

f (En, l, r) ≡ rRnl (r) = −
√

(n− l − 1)!

(n + l)!3/2
√

2n

(
2

n

)l+3/2

e−
r
n rl+1L2l+1

n+l

(
2r

n

)

(4.13)

and the corresponding energy eigenvalues are given by

En = −Ry

n2
(4.14)

This result shows that the energy of a hydrogenic energy eigenstate depends

only on n, such that states with equal n but different l are degenerate. The
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Rydberg constant Ry given in Eq.(4.7) becomes simply 1/2 in atomic units.

In our experiment helium atoms are used. In non-hydrogenic atoms, the ex-

cited valence electron in a Rydberg state does not only interact with the nu-

cleus, but it is also affected by the core electrons. Considering this effect the

Coulomb potential can be modified to the form −1
r

+ Vc(r) , where Vc(r) de-

scribes the deviation from −1
r

and can include the atomic fine structure as well

as core-polarization effects. For large r, the deviation term Vc(r) approaches

to zero. For many practical purposes, therefore, it is not necessary to know

the exact form of Vc(r), because the wave function of the valence electron

far away from the core can be approximated from the well-known hydrogenic

wave function except for the phase shift that arises in the core. Considering

the effect of the deviation Vc(r), we need to introduce the concept of quantum

defect [67].

4.4 Quantum Defect

As described above, the main difference between non-hydrogenic atoms and

hydrogen atoms is the influence of the core electrons on the valence electron.

When the electron is far from the ionic core, as it is in the case of a high

angular momentum l-state, it sees a net charge due to the screening of the

core charge by the core electrons and behaves like a hydrogen atom.

However, if the electron penetrates the core, the core electrons no longer

shield the nucleus to the same degree. Especially the energies of the low l-states

of non-hydrogenic atoms will be depressed with respect to their hydrogenic
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l − value a b c d

0 0.296609 -0.038840 0.004960 0.000000

1 0.068320 0.017870 -0.017190 0.000000

2 0.002869 0.006220 0.000000 0.000000

3 0.000240 -0.002090 0.000000 0.000000

Table 4.2: Rydberg-Ritz coefficients for the calculation of the quantum defect

of triplet Rydberg helium atoms, but neglecting spin-orbit splitting. The data

is obtained from [76].

counterparts by this reduction of shielding caused by core penetration. Taking

this into acount, Eq.(4.14) can be corrected [67]

En = − Ry

(n− δl)
2 (4.15)

The quantity δl is called quantum defect and depends on the angular mo-

mentum l. In general, δl is a function of n which can be described by the

Rydberg-Ritz formula [68]:

δl = a + bEn + cE2
n + dE3

n + · · · (4.16)

where a, b, c, d, · · · are the Rydberg-Ritz coefficients for the calculation of the

quantum defect [ see Table 4.2 ]. For non-penetrating orbits, core polarization

causes similar but much smaller energy shifts.
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4.5 The Stark Effect on the Hydrogen Atom

The Stark effect in Rydberg atoms has been an interesting subject since

the research on the Stark structure of Rydberg states of alkali metals by Zim-

merman et al.[69]. Because the valence electron in Rydberg atoms sees the

ionic core like a positive net charge, it can be a useful starting point to con-

sider the Stark structure of the hydrogen atom. The Hamiltonian describing

the interaction of the atom with an uniform electric field F directed along the

z-axis is [69]

HF = −p · F = Fz (4.17)

where p is the electric-dipole operator. If we neglect electron and nuclear

spin, the Schrödinger equation for the hydrogen atom in a static electric field

is given by [69]
(
−1

2
∇2 − Z

r
+ Fz

)
Ψ (r) = EΨ (r) (4.18)

Eq.(4.18) is separable in parabolic coordinates ξ, η, ϕ which are defined by the

relations [66]

ξ = r + z,

η = r − z,

ϕ = arctan (y/x) (4.19)

Using Eq.(4.19), the operator ∇2 can be expressed as

∇2 =
4

ξ + η

d

dξ

(
ξ

d

dξ

)
+

4

ξ + η

d

dη

(
η

d

dη

)
+

1

ξη

d2

dϕ2
(4.20)

76



We assume that the solution of the Schrödinger equation (4.18) can be written

in the form,

Ψ (ξ, η, ϕ) = Φ1 (ξ) Φ2 (η) e±imϕ , Z1 + Z2 = Z (m ≥ 0) (4.21)

where Z1 and Z2 are separation constants which may be thought as the positive

charges binding the electron in the ξ and η coordinates.

Substituting Eqs.(4.20) and (4.21) into Eq.(4.18), we extract two separate

equations for Φ1 (ξ) and Φ2 (η)

d

dξ

(
ξ
dΦ1

dξ

)
+

(
1

2
Eξ + Z1 − m2

4ξ
− 1

4
Fξ2

)
Φ1 = 0,

d

dη

(
η
dΦ2

dη

)
+

(
1

2
Eη + Z2 − m2

4η
+

1

4
Fη2

)
Φ2 = 0, (4.22)

These ordinary differential equations (4.22) can be directly integrated or they

may be treated by means of a perturbation procedure. In the low electric field

region, the perturbation theory starting from the zero field solutions will give a

satisfactory result . In the case of F = 0 in Eq.(4.22), the normalized solution

has the form of [66]

Φ1 =

√
n1!

(n1 + m)!3/2
e−

1
2
εξξ

1
2
mε

1
2
(m+1)Lm

n1+m (εξ) ,

Φ2 =

√
n2!

(n2 + m)!3/2
e−

1
2
εηη

1
2
mε

1
2
(m+1)Lm

n2+m (εη) , (4.23)

with ε =
√−2E. Lm

ni+m (x) ( x = εξ or εη ) is the Laguerre polynomial [65, 66],

and ni = Zin − (m + 1)/2 (i = 1, 2). The relation between the quantum

numbers n, |m|, and the parabolic quantum numbers n1, n2 is given by

n = n1 + n2 + |m|+ 1 (4.24)
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Here, n1, n2 represent the numbers of nodes in the wave functions given in

Eq.(4.23). The perturbation procedure takes the separation parameters Zi as

the eigenvalues instead of the energy E. The eigenvalue Zi, in the case of

F = 0, can be expressed in terms of the electric quantum number ni and the

magnetic quantum number m [66].

Z
(0)
i =

(
ni +

m + 1

2

)
ε (4.25)

If F 6= 0, the first order perturbation term Z
(1)
i can be obtained by the integral

of the perturbation potential evaluated over the unperturbed eigenfunctions

given in Eq.(4.23).

Z
(1)
i = ±1

4
Fε−2

(
6n2

i + 6nim + m2 + 6n1 + 3m + 2
)

(4.26)

The signs +,− are for i = 1, 2 respectively. Eqs (4.25) and (4.26), together

with the relation Z = Z1 + Z2, leads to the first order perturbed term for the

energy:

E = −1

2
ε2 = −1

2

Z2

n2
+

3

2

Fn

Z
(n1 − n2) (4.27)

In the next order of perturbation theory, a quadratic term in the electric

field appears in addition to the linear Stark effect in Eq.(4.27). This can be

calculated by second order perturbation theory and the resulting energy is

given by [65, 66].

E = E(0) + E(1) + E(2)

= − Z2

2n2
+

3

2
F

(
n

Z

)
(n1 − n2)

− 1

16
F 2

(
n

Z

)4

[17n2 − 3 (n1 − n2)
2 − 9m2 + 19] (4.28)
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Silverstone [70] calculated to higher order, but the first and second order shifts

are adequate for many applications. For example, E. Luc-Koenig et al. [71]

showed that the energy levels of the hydrogen atom exhibit linear Stark shifts

from zero field to the point at which field ionization occurs. On the other

hand, Peter M. Koch observed that even the second order energy levels are

not valid for a certain precise measurement [72].

4.6 Stark Effect in Helium Atoms

For helium atoms, the hydrogenic case only can apply for high l values,

and the Stark shifts produced by relatively weak fields are proportional to the

square of the electric field intensity [66]. The quantum mechanical calculations

for Rydberg atoms in electric fields was described by Zimmerman et al., in 1979

[69]. For an atom in an external field, the total Hamiltonian is given by [69]

H = H0 + Fz + Hfs (4.29)

where H0 is the Hamiltonian of the unperturbed system, and Hfs the energy

shift of the states due to fine-structure. It is experimentally important for

the heavier atoms, but the fine structure in the Rydberg levels of He is small

and can be neglected for high n states [73]. The diagonal elements of this

Hamiltonian matrix are the zero-field energies, which can be calculated with

the formula (4.15) using known quantum defect values [74]. It means that

unperturbed energies are diagonal in a spherical basis, not a parabolic ba-

sis. Therefore, it is essential not only to transform the representation from

spherical, to parabolic, basis, but also to generalize the parabolic states to
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non-integral order [75]. Since there is no advantage in employing a parabolic

representation for He as was used in the alkali atoms [69], the Stark problem

for He was treated in a spherical basis. The electric field contribution to the

Stark effect is represented in the off-diagonal elements in the basis provided

by the eigenvector |nlm〉 of the zero-field Hamiltonian [69].

〈nlm |Fz|n′l′m′〉 = δ (m,m′) δ (l, l ± 1) F 〈lm |cos θ| l′m′〉 〈nl |r|n′l′〉 (4.30)

where, the unit of Eq.(4.30) is explicitly ea0( = 1 in atomic unit, a0 : Bohr

radius) and δ (m,m′) = 0 unless m = m′. The angular part solution is analyt-

ically given by a spherical harmonics [69]

〈l,m |cos θ| l − 1,m′〉 =

√√√√ l2 −m2

(2l + 1) (2l − 1)
,

〈l,m |cos θ| l + 1,m′〉 =

√√√√ (l + 1)2 −m2

(2l + 3) (2l + 1)
(4.31)

The main task of computation is to evaluate the radial matrix elements 〈nl |r|n′l′〉.
In the method described in Ref. [69], numerical integration of the radial equa-

tion at the quantum-defect shifted energy gave the most satisfactory results.

After all matrix elements are evaluated, the resulting matrix is diagonalized.

The resulting energy levels plotted as a function of field strength is called a

Stark map. For 4He at n=26, such a map, shown in Figure 4.1, displays the

shifts of the s, p states due to their quantum defects. For the manifold (region

A, l > 3 ), the external field lifts the degeneracy of the zero-field energy levels.

In addition, anti-crossings are clearly observable in the areas such as B. Since a

non-hydrogenic He core breaks the Coulomb symmetry and couples the Stark

levels, anti-crossing effects dependent on the coupling strengths arise [77].
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Figure 4.1: Electric field dependence of the excitation spectra for n=26 (Stark

map) [76]

We did spectroscopy experiments to observe these energy levels. In our

experiments, the 389 nm laser was locked to the transition from the state 23S1

to the state 33P2 and the wavelength of the red laser was moved between 796.41

nm and 796.81 nm [see Figure 3.1]. In order to observe the transition signals,

the red laser was also locked after being tuned to the desired wavelength. Then

the lower-field plate was scanned with function generator (amplitude VPP : 10

V , frequency : 100 Hz) and the applied voltage to the upper field-plate was

slowly moved [the geometry of the field plates is presented in Figure 3.5(b)].

The ion-signals are observed when the frequency of the red laser is on

resonance with a transition to one of the Stark energy levels. Because of the
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Figure 4.2: Experimentally obtained Stark map for n=26
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mode-hops of the red laser at some wavelengths, it was impossible to observe

the resonance peaks for all the regular spacings of wavelength as shown in

Figure 4.2. The strongly deppressed s-state is clearly observed. The manifolds

and their anti-crossings are represented by A and B, respectively, with dot-

circle.

4.7 Oscillator Strengths and Lifetimes

The relative intensities of the Stark manifold spectral peaks are determined

by the probability that an atom will undergo a transition from the state nlm

to n′l′m′ [66]. To calculate the strength of a certain transition it is convenient

to introduce the oscillator strength defined as [66, 78]

fn′l′m′,nlm = 2
m

h̄
ωn′l′,nl |〈n′l′m′ |z|nlm〉|2 (4.32)

where ωn′l′,nl = (En′l′ − Enl)/h̄. This equation shows that the oscillator strength

corresponding to a transition nlm → n′l′m′ depends on the orientation of the

z-axis, that is, on the direction of polarization. For the sum of the oscillator

strengths for all transitions from a definite state n of the atom, the Thomas-

Reiche-Kuhn rule applies [65, 66, 78]

∑

n′l′m′
fn′l′m′,nlm = Z (4.33)

where Z is the total number of electrons in the system. This is a very general

rule which holds for any atom or molecule, with or without external fields, for

any polarization direction. In free space, the radiative decay rate of an atom

cannot depend upon the magnetic quantum number m. Therefore, it is useful
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Figure 4.3: He triplet Stark intensities

to define an average oscillator strength of the transition nl → n′l′, which is

independent of polarization and m, as [61, 66]

f̄n′l′,nl =
2

3

m

h̄
ωn′l′,nl

lmax

2l + 1
|〈n′l′ |r|nl〉|2 (4.34)

where lmax is the larger of l and l′. 2l + 1 is the degree of degeneracy of the

initial state. If we reverse the roles of l and l′, it is straightforward to show

that

f̄n′l′,nl = −2l′ + 1

2l + 1
f̄nl,n′l′ (4.35)

The average oscillator strength (4.34) also follows a sum rule [61, 66]

∑

n′
f̄n′l−1,nl = −1

3

l(2l − 1)

2l + 1
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∑

n′
f̄n′l+1,nl =

1

3

(l + 1)(2l + 3)

2l + 1
(4.36)

With this result, it is possible to calculate the sum of the oscillator strengths

of all the transitions from a certain level nl to the levels of a fixed orbital

quantum number. From (4.36) it is apparent that

∑

n′l′
f̄n′l′,nl = 1 (4.37)

where l′ = l± 1. Eq.(4.36) shows that among the transitions nl → n′l− 1 the

ones which lead to lower energies predominate, whereas the strongest nl →
n′l + 1 transitions are to higher energies.

For the application to the atom optics we are interested in the Stark state

with the highest transition probability. This can be estimated through the

distribution of oscillator strengths among a manifold of Rydberg Stark states.

The numerical calculation for the intensity of excitation of n = 26 Stark states

from 33P2 state is shown in Figure 4.3.

Comparing the theoretical calculation with the experimental result [see

Figure 4.4] leads to a different behavior. The strongest transition occurs at

near zero field and decreases with increasing the electric fields, which is oppo-

site to the calculation. We propose that the difference comes from the slope

of 26S levels. Since the energies behave quadratically with field, the range of

field values lying within the resonance width decreases as the field increases.

Therefore the fraction of atoms that are resonant decreases with field. This

does not lead to line broadening with field because changing the electric field

value does not bring relatively more atoms into resonance at higher electric

fields.
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Figure 4.4: Transition strength for n=26S Stark states

The Einstein A coefficient, which defines the spontaneous decay rate of the

nl state to the lower lying n′l′ state, also can be expressed in terms of the

average oscillator strength [61, 66]

An′l′,nl = −2e2ω2
n′l′,nl

mc3
f̄n′l′,nl (4.38)

In general, the radiative lifetime, τnl, of the nl state is defined by the inverse

of the total spontaneous decay rate [61].

τnl =

[∑

n′l′
An′l′,nl

]−1

(4.39)

We can also define the branching ratio bn′l′,nl for the decay from the state nl

to a particular state n′l′ as

bn′l′,nl =
An′l′,nl∑

n′l′
An′l′,nl

= τnlAn′l′,nl (4.40)
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Chapter 5

Coherent Manipulation of Atoms

5.1 Introduction

Coherent excitation of atoms to well-defined quantum states has been a

crucial issue in atomic and molecular experiments [80]. In our experiment,

we want to achieve a highly efficient population transfer from the metastable

state 23S1 of helium to Rydberg states. Then the atomic beam can be focused

because of the large interaction of the Rydberg helium atoms in an inhomoge-

neous electrostatic field. Incoherent excitation does not transfer a significant

fraction of atoms to the excited state. The possibility of coherent population

transfer with high efficiency by suitably delayed pulses was first predicted in

1984 by Oreg et al. [81] and the technique to achieve a complete popula-

tion transfer to the excited states, such as the Stimulated Raman Adiabatic

Passage (STIRAP) method, was introduced by Bergmann and coworkers [82].

This chapter describes different techniques that can be used to transfer pop-

ulation. Starting with two-state systems, we consider the efficiency of each
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method of population transfer. Then the three-state STIRAP technique is

described.

5.2 Population Transfer in a Two Level Sys-

tem

For the case of a two-state atomic system in incoherent radiation, the rate

of change in an atomic population was first predicted by Einstein [83]. The

changes induced by radiation are caused by absorption, stimulated emission,

and spontaneous emission. If sufficiently intense radiation near the atomic

resonance frequency is applied to a ground atomic state so that stimulated

emission dominates spontaneous emission, then the excited state population

at time t is

Pex(t) =
1

2

{
1− exp

[
−B

∫ t

0
u(t′)dt′

]}
(5.1)

where B is the Einstein B (absorption) coefficient and u(t) is the spectral

energy density. This equation shows that the excited state population reaches,

at most, the saturation value of 50 %, which is the best transfer efficiency in

the incoherent radiation regime [incoh.exc. line in Figure 5.1].

However, when unexcited atoms are exposed to a coherent radiation field,

Eq.(5.1) is no longer valid and one has to obtain the probability Pn(t) =

|Cn(t)|2 of finding the system in state |n〉 at time t by calculating the proba-

bility amplitude Cn(t) starting from the time-dependent Schrödinger equation

d

dt
Cn(t) = − i

h̄

∑
m

Hmn (t) Cm (t) (5.2)
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Figure 5.1: Evolution of the population of the upper state in a two state system

[80].

where the Hamiltonian matrix elements Hmn represent the interaction between

the atom and radiation field.

As shown in Figure 5.2, consider the case of idealization of the radiation

as a monochromatic field E(r, t) = E0 cos(k · r − ωt) with frequency ω and

amplitude |E0|. The relevant quantity to determine the rate of population

transfer produced by coherent excitation between ground state |g〉 and excited

state |e〉 is the strength of the interaction, namely the Rabi frequency [2, 84]:

Ω = −e |E0|
h̄

〈e |r| g〉 (5.3)

In Eq.(5.2), an atom-field interaction Hamiltonian is given by [85]

H = H0 + H ′ = h̄




ωg 0

0 ωe




+ h̄




0 Ω cos ωt

Ω cos ωt 0




(5.4)
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Figure 5.2: Atom-Field Interaction. ω0 is the Bohr frequency corresponding

to the frequency difference ωg and ωe , which are the frequencies of the ground

and excited states, respectively.

where ωg and ωe are the atomic energy frequencies corresponding to the two

relevant states |g〉 and |e〉, respectively. If we solve (5.2) with this Hamilto-

nian under the rotating wave approximation, the excitation probability can be

deduced [85]

Pex(t) =
1

2

(
Ω

Ωeff

)2

[1− cos (Ωeff t)] (5.5)

where the effective Rabi frequency is defined by

Ωeff ≡
√

Ω2 + ∆2 (5.6)

and ∆ denotes the frequency detuning from resonance (∆ = ω−ω0). As we can

see from (5.5), the oscillations in population become more rapid with increasing

|∆| and in general, the population will never be transferred completely to the

excited state unless ∆ = 0. However, for the resonance case, that is ∆ = 0,

the population oscillates between 0 and 1 with Rabi frequency Ω as shown in

Figure 5.1 (coh.exc line). Thus, for cos(Ωt) = −1, the population is completely

inverted. In a real experiment, one usually deals with an inhomogeneously
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broadened system such as a thermal gas. Since the atoms have a certain

velocity distribution they see the frequency of the applied field by the Doppler

effect. This causes a detuning effect so that the maximum population of the

ensemble in the excited state is always less than 1. In addition, the atoms

may experience different intensities across the field so that they cannot fulfill

the complete transfer simultaneously due to the different values of Ωt. These

experimental limitations require an averaging over the theoretical excitation

probabilities, resulting in a less efficient population transfer than in the case

of interaction between single stationary atoms and fields of constant intensity.

Another robust method for achieving efficient population transfer is adia-

batic rapid passage (ARP). In this technique, the frequency of the external field

is slowly tuned across the atomic resonance from below resonance (∆ ¿ Ω) to

above resonance (∆ À Ω) or in reverse. The time scale of this frequency sweep

must be slower than the Rabi frequency (T À Ω−1), but faster than sponta-

neous emission (T ¿ Γ−1) , here Γ is the decay rate of the upper state. For a

quantitative analysis of this process, we can turn to the adiabatic theorem of

quantum mechanics. In the rotating frame the time dependent Hamiltonian

in (5.4) can be expressed as [2, 86]

Heff =
h̄

2




0 Ω

Ω −2∆




(5.7)

The basis for this Hamiltonian is given by |g, n + 1〉, where the atom is in the

ground state and the field contains n + 1 photons, and |e, n〉 , where the atom

is in the excited state and the field contains n photons.
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The eigenvalues of (5.7) are:

E± =
h̄

2

(
∆±

√
Ω2 + ∆2

)
(5.8)

and the corresponding eigenvectors are:

|n+〉 = sin Θ |g, n + 1〉+ cos Θ |e, n〉

|n−〉 = cos Θ |g, n + 1〉 − sin Θ |e, n〉 (5.9)

where the mixing angle Θ is defined as

Θ =
1

2
tan−1

(
Ω

∆

)
(5.10)

Therefore the energy separation of these eigenstates is just the effective

Rabi frequency Ωeff (5.6). Figure 5.3 shows the energies of the eigenstates

as a function of the detuning given in Eq.(5.8). When Θ = 0 (∆ < 0), the

eigenstate |n−〉 becomes |g, n + 1〉 . If we increase the interaction strength Ω
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and cross the resonance (∆ = 0), then the state |n−〉 evolves into a mixture of

|g, n + 1〉 and |e, n〉. After passing through the resonance Ω starts to decrease

and ∆ moves to a positive detuning, so that Θ goes to π/2, that is, |n−〉 ends

up in the state |e, n〉. This process requires the adiabatic condition [87, 88]:

√
Ω2 + ∆2(t) À

∣∣∣∣∣
d

dt
Θ (t)

∣∣∣∣∣ (5.11)

Finally the excited state can be populated up to an efficiency of 100 % through

adiabatic following on the lower branch in Figure 5.3 [89]. The eigenstates of

the Hamiltonian given in (5.7) are known as the dressed states, since the laser

field dresses the bare atomic states.
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Figure 5.4: Bloch sphere description of adiabatic rapid passage

Another description for adiabatic passage is based on the Bloch vector

model. Consider atoms in the ground state (south pole of the Bloch sphere)

and a laser detuned to the far red, that is, |∆| À Ω. The Bloch vector

R, initially parallel to the effective Rabi frequency vector Ωeff , will precess

around Ωeff at frequency ∆. Now suppose we sweep the detuning ∆, changing
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the direction of Ωeff , through resonance slowly compared to |Ωeff |. The Bloch

vector R will then adiabatically follow Ωeff and end up parallel to Ωeff in the

excited state (north pole of the Bloch sphere) [Figure 5.4]. Additionally, this

process must be completed in a time shorter than the radiative lifetime of the

excited state, and that’s why this process known as adiabatic rapid passage.

5.3 Theory of the Three-state STIRAP

In the STIRAP procedure, three states, labeled |1〉, |2〉, and |3〉, are linked

by two successive interactions, |1〉−|2〉 and |2〉−|3〉 by pump and Stokes fields

[Figure 5.5]. When two coherent fields are pulsed and ordered in counterin-

tuitive sequence, in which the Stokes field precedes the pump field, complete

population transfer from the initial state |1〉 to the final state |3〉 can be pro-

duced.

The simple analysis of STIRAP begins with the time-dependent Schrodinger

equation (5.2) for a three-level atom. Under the rotating-wave approximation

(RWA), the Hamiltonian of the interaction between the non-degenerate three

states and two coherent radiation fields is [85]:

H(t) =
h̄

2




0 ΩP (t) 0

ΩP (t) 2∆P ΩS(t)

0 ΩS(t) 2 (∆P −∆S)




(5.12)
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Figure 5.5: Three-level excitation scheme. The initially populated state |1〉
and the final state |3〉 are coupled by the pump laser P and the Stokes laser S

via an intermediate state |2〉 [80].

Here ΩP (t) and ΩS(t) are the Rabi frequencies of the pump and Stokes fields

determining the coupling strength between the related states, while the de-

tunings are defined by h̄∆P = (E2−E1)− h̄ωP , h̄∆S = (E2−E3)− h̄ωS ( ωP

and ωS are the frequencies of pump and Stokes fields, respectively as shown

in Figure 5.5.)

In the case of STIRAP, the two-photon resonance condition between states

|1〉 and |3〉 should be fulfilled, that is, ∆P = ∆S = ∆. Solving the eigenvalue

equation for (5.12) yields the three energies of the dressed states which are the

eigenstates of the atom-field interaction system, namely [85];

ω+(t) = ∆ +
√

∆2 + Ω2
P (t) + Ω2

S(t)

ω0(t) = 0

ω−(t) = ∆−
√

∆2 + Ω2
P (t) + Ω2

S(t) (5.13)

The corresponding eigenstates |a+〉, |a0〉, and |a−〉 are represented by the linear
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combination of the bare states |1〉, |2〉, and |3〉 [85]:

∣∣∣a+
〉

= sin θ sin ϕ |1〉+ cos ϕ |2〉+ cos θ sin ϕ |3〉
∣∣∣a0

〉
= cos θ |1〉 − sin θ |3〉

∣∣∣a−
〉

= sin θ cos ϕ |1〉 − sin ϕ |2〉+ cos θ cos ϕ |3〉 (5.14)

where the time-dependent mixing angles θ(t) and ϕ(t) are defined by the re-

lationship

tan θ(t) = ΩP (t)/ΩS(t)

tan 2ϕ(t) =
√

Ω2
P (t) + Ω2

S(t)/∆ (5.15)

One of the dressed states in (5.14) has no component of the state |2〉, and

is thus only a coherent superposition of the initial state |1〉 and the final state

|3〉. For atoms in the state |2〉 there are several decay channels due to spon-

taneous emission, and these are the main reason for population loss. Efficient

population transfer is possible if these losses can be minimized or avoided. In

that respect the state |a0〉, known as a trapped state, turns out to be an appro-

priate vehicle for the most efficient population transfer. Note that the state

vector |Ψ〉, which describes the time evolution of a system, can be expanded

in terms of the bare {|1〉 , |2〉 , |3〉} or dressed {|a−〉 , |a0〉 , |a+〉} states. As long

as the state vector |Ψ〉 is bound to the trapped state |a0〉, the intermediate

state |2〉 is not involved in the process of population transfer and will never

be populated throughout the whole interaction time. Therefore, we need to

know how to tie the state vector |Ψ〉 to the state |a0〉.
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Figure 5.6: Time dependence of the pump and Stokes Rabi frequencies ΩS,P ,

the mixing angle Θ, and the populations in three-state STIRAP [80]

In Figure 5.6, the atoms are exposed to the Stokes field first and see the

pump field later:

ΩP (t → 0)

ΩS(t → 0)
→ 0 (region I)

ΩS(t →∞)

ΩP (t →∞)
→ 0 (region III) (5.16)

In this case, the mixing angle θ(t) defined by (5.15) rises from θ(t → 0) = 0 to

θ(t →∞) = π/2. From Eq. (5.14) we see, that the state |a0〉 evolves from the

initial state |1〉 (t → 0) to a superposition of states |1〉 and |3〉 in the region

II and finally to the state |3〉 as t →∞. Consequently, the population can be

completely transferred from the initial state |1〉 to the final state |3〉 by means
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of an adiabatic link of those states.

a+

a-

-3

2

1

a
0

ΘΨ

: atomic bare states : dressed states

Figure 5.7: Vector picture of STIRAP. |1〉, |2〉, and |3〉 are atomic bare states.

|a0〉, |a−〉, and |a+〉 are the dressed states. |Ψ〉 is the state vector and Θ

represents the mixing angle [80, 90]

A vector picture of this STIRAP process is also shown in Figure 5.7. At

the very early times, atomic beam only sees a very weak Stokes field first.

The atomic system is not perturbed by the field, so we can think the state

vector |Ψ〉 is lined up to the atomic bare state |1〉 and the dressed state |a0〉,
that is, |〈a0 |Ψ〉| = 1. At this point the bare states |2〉 and |3〉 are coupled

by the Stokes field so that these two states start to be split while state |1〉
stays without any interaction. When the Stokes field reaches its maximum in-

tensity, the energy splitting between states |2〉 and |3〉 will also be maximum.

98



Even the atomic beam start to see a weak pump field in this time, the atoms

does not make the transition because the energy level of the other states are

shifted too far-off resonance to make the transition with a weak pump field.

Therefore, the state vector |Ψ〉 still stays along the states |1〉 and |a0〉 but

there is just a small amount of deviation due to the weak pump beam. After

passing through the maximum intensity of the Stokes field, the atomic beam

sees an increasing pump- and a decreasing Stokes- intensity. In other words,

the mixing angle Θ increases. The state vector |Ψ〉 departs from the state |1〉
and moves toward state |−3〉 followed the evolution of state |a0〉 adiabatically.

As long as the coupling is based on sufficient Rabi frequencies, the motion of

the state vector |Ψ〉 keeps close to the state |a0〉 and this results in complete

population transfer from the initial state |1〉 to the final state |3〉. By contrast,

insufficient coupling causes the state vector |Ψ〉 to deviate from the state |a0〉
and populates the leaky state |2〉.

5.4 Conditions for Adiabatic Following

For efficient population transfer, the adiabatic condition needs to be ful-

filled as mentioned above. In the basis of the dressed states, the Schrödinger

equation for the state vector |Ψ〉 is expressed in the following form [90]:
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ih
∂

∂t




c+ (t)

c0(t)

c−(t)




=
h̄

2




Ωeff cot ϕ 2iθ̇ sin ϕ 2iϕ̇

−2iθ̇ sin ϕ 0 −2iθ̇ cos ϕ

−2iϕ̇ 2iθ̇ cos ϕ −Ωeff tan ϕ







c+ (t)

c0(t)

c−(t)




(5.17)

Here |Ψ〉 = c+ |a+〉+c0 |a0〉+c− |a−〉 and Ωeff =
√

Ω2
P + Ω2

S . The condition

for adiabatic following requires that the system should remain in |a0〉 after the

passage if it is initially prepared in |Ψ (0)〉 = |a0〉, that is, c0 (0) = 1. Thus the

coupling between state |a0〉 and either the states |a+〉 or |a−〉 should remain

negligible during the passage. If the off-diagonal elements of the Hamiltonian

in Eq.(5.17) are zero, then there is no coupling between the coefficients c0

and c±. Especially, we can set the experimental condition to the one-photon

resonance, ∆ = 0. Then, we have ϕ = π/4 by the Eq.(5.15). Now the coupling

term 2iθ̇ sin ϕ is negligible, provided that θ̇ is much smaller than the field-

induced energy splitting Ωeff , that is, θ̇ ¿ Ωeff . Using Eq.(5.15), we deduce

the condition for adiabatic following explicitly in terms of Rabi frequencies:

∣∣∣θ̇
∣∣∣ =

∣∣∣∣∣
Ω̇P ΩS − ΩSΩ̇P

Ω2
P + Ω2

S

∣∣∣∣∣ ¿ Ωeff (5.18)

As long as this condition is satisfied during the passage, non-adiabatic coupling

of the state |a0〉 to the states |a±〉 is small, and efficient population transfer is

possible. Consider the atomic beam passing through the spatially overlapped

area of two Gaussian shaped Stokes and pump fields during the time period T ,

and take a time average of θ̇ during this time period T . We have
〈
θ̇
〉

av
= π/2T .
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Combining this result with Eq.(5.18) leads

ΩeffT À 1 (5.19)

It has been suggested that ΩeffT > 10 is appropriate for efficient population

transfer based on the results of several experiments and simulations [90].

5.5 STIRAP Results

Consider the decay rate Γi which describes the decay from level i primarily

due to spontaneous emission. In the presence of decay, one has to account for

irreversible population loss by including complex energies in the Hamiltonian

in Eq.(5.12) which then becomes under the two-photon resonance (∆P = ∆S)

condition

H(t) =
h̄

2




0 ΩP (t) 0

ΩP (t) 2∆− iΓ2 ΩS(t)

0 ΩS(t) −iΓ3




(5.20)

It is necessary to know the Rabi frequencies for the corresponding transi-

tions to obtain numerical values for the probability of the excitation of a He∗

atom into a Rydberg state. The Rabi frequency is related to the peak intensity

of the applied light field by Ω = µ
h̄

√
2I
ε0c

(µ : transition dipole moment) as well

described in Chapter 1, and the conversion relations for the He∗ transitions

23S1 → 33P2 → 263S1 are presented in Table 5.1.
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Transitions 23S1 → 33P2 33P2 → 263S1

m = 0 ΩP (0) = 1.78× 102
√

IP MHz ΩS(0) = 0.117× 102
√

IS MHz

m = ±1 ΩP (1) = 1.54× 102
√

IP MHz ΩS(1) = 0.1× 102
√

IS MHz

Table 5.1: Conversions from intensities to Rabi frequencies ( IP and IS are

expressed in W/cm2)

The time evolution of the numerically calculated population is illustrated

in Figure 5.8 for the Rabi frequencies ΩP (0) = 35 MHz and ΩS(0) = 40 MHz.

The atomic velocity was chosen to be 1500 m/s, the beam waist for both

laser beams was assumed to be 1mm, and the delay time between the two

beams was 1.4 µs. The ΩP (t) and ΩS(t) time dependence are represented

by Gaussian pulses : ΩP (t) = ΩP (0) exp [−(t/10−6 − 6)2] /2 and ΩS(t) =

ΩS(0) exp [−(t/10−6 − 4.6)2] /2. The decrease in the number of atoms after

reaching the maximum probability 1 is the effect of the decay rate Γ.

The effect of the intermediate-level detuning ∆ on the efficiency of the STI-

RAP was also numerically calculated and is shown in Figure 5.9. The transfer

efficiency decreases as the detuning increases because of the deteriorating adi-

abaticity, as can be seen from Eqs.(5.15) and (5.17)

Using the configuration shown in Figure 3.5, the magnitude of the STIRAP

signal was monitored with our ion detector while the field plates were scanned

through the Stark energy levels (Figure 5.10). The pump (blue) and Stokes

(red) laser beams were focused onto the atomic beam with cylindrical lenses
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Figure 5.8: Time evolution of the numerically calculated population in a Ry-

dberg state. The curves labelled ΩP and ΩS represent the time dependence of

the pump field and the Stokes field, respectively.
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Figure 5.9: Excitation probability for different detunings of the two-photon

excitation.
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Figure 5.10: Ion signal from the Rydberg states against the Red (Stokes)

beam position. Negative (positive) position corresponds to the Red (Blue)

beam coming ahead and the overlap position is zero.

(f = 400 mm for red and f = 800 mm for blue) to a Gaussian waist of 400 µm

and 600 µm, respectively. The long axes aligned perpendicular to the atomic

beam axis were 1.5 mm (red) and 2.0 mm (blue). The focal position of the red

beam with respect to that of the blue beam was varied along the atomic beam

axis. We use a co-propagating beam configuration using a dichroic mirror

which is high-reflection coated for the red beam and anti-reflection coated for

the blue beam. The Rabi frequencies ΩP and ΩS were matched approximately

at the value of 35 ∼ 40 MHz. In experimental reality the maximum population

transfer was achieved when the separation of the two beams was ∼ 0.4 mm.

This corresponds to an interaction time of ∼ 0.25 µs for an atomic velocity
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of 1500 m/s, and we get ΩeffT = 13± 2. Thus, the adiabatic condition given

in Eq.(5.19) was fulfilled. From Figure 5.10 it is obvious that the efficiency

in the STIRAP configuration is much higher than in the overlapping beam

configuration.

5.6 Autler-Townes(AT) Effect

Since Autler and Townes first observed the splitting of an absorption line in

OCS (carbonyl sulphide) into a doublet when applying an rf-field in 1955 [91],

the AT effect has been extensively studied in atoms and molecules [92, 93].

In this experiment, a strong 389 nm pump laser induces an AT splitting, and

we can measure the separation of the doublet, which corresponds to the Rabi

frequency of the pump laser, by employing the red laser as a probe.

5.6.1 Theory of the Autler-Townes Effect

Systems in a strong optical field are best described in the dressed atom

picture [94]. The total Hamiltonian consists of three parts: the atomic part,

which gives the atomic energy levels, the radiation part whose eigenvalues

are En = (n + 1/2) h̄ωl ( ωl : radiation field frequency), and the atom-field

interaction part [2].

Consider the energy level diagram of the atomic and the radiation part

as shown in Figure 5.11. If we express the states associated with these two

parts as |atom , photon〉, then the states A, B, and C, for example, can be

represented by |1 , n− 1〉, |2 , n− 1〉, and |1 , n〉, respectively. State A in the
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Figure 5.11: Atom-Field system energy diagram. Ref. [2]

(n-1)-photon column is raised to state C in the n-photon column by one pho-

ton of energy h̄ωl. In Figure 5.12(a), the 389 nm laser field couples two atomic

states |1〉 and |2〉 with a detuning ∆. Therefore, a closely spaced pair of one

excited state |2, n− 1〉 and one ground state |1, n〉 separated by h̄∆ is formed,

as shown in Figure 5.12(b). The atom-field interaction part couples the states

|2, n− 1〉 and |1, n〉 through the off-diagonal matrix elements of the Hamilto-

nian, and splits the energy levels farther apart to
(
Ωeff =

√
Ω2

P + ∆2

)
.

Consider the three-level ladder system shown in Figure 5.12(a). The states

|1〉 - |2〉 are coupled by a strong 389 nm pump field, and a weak field couples

the states |2〉 - |3〉 . Then the dressed states are given by
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Figure 5.12: Autler-Townes effect in dressed picture

|Φ1〉 = cos θ |1, n〉 − sin θ |2, n− 1〉

|Φ2〉 = sin θ |1, n〉+ cos θ |2, n− 1〉

|Φ3〉 = |3, n− 1〉 (5.21)

The mixing angle θ is defined by tan 2θ = ΩP /∆ the same way as in Eq. (5.10)

and the eigenvalues of these dressed states depend on the Rabi frequency of

the |1〉 - |2〉 transition, ΩP , and on the detuning ∆:

ε1 = − h̄

2

(
∆ +

√
Ω2

P + ∆2

)

ε2 = − h̄

2

(
∆−

√
Ω2

P + ∆2

)

ε3 = δ (5.22)

where δ is the detuning of the probe field. Eqs.(5.21) and (5.22) shows that a
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probe field induced transition between the state |Φ3〉 and the dressed state |Φj〉
occur when the probe detuning δ is chosen to satisfy the resonance condition

δ = εj for j = 1, 2. Note that because ε2 > ε1, resonance with |Φ2〉 occurs for

shorter δ than resonance with |Φ1〉, i.e., the |Φ2〉 resonance peak appears at

the red-side of probe detuning.

∆ = 0 ∆ < 0 ∆ > 0

∆
∆ ΩeffΩp Ωeff

Φ3

Φ2

Φ1

Φ3

Φ2

Φ1

Φ3

Φ2

Φ1

2, n-1

2, n-1

2, n-1

3, n-1 3, n-1 3, n-1

1, n

1, n

1, n

(a) (b) (c)

Figure 5.13: Detuning dependence of the Autler-Townes splitting. (a) reso-

nance (b) red-detuning (c) blue-detuning.

For a zero detuning of pump field ( see Figure 5.13(a) ), the separation

between two peaks, ε2 − ε1, is the Rabi frequency ΩP . Thus the minimum

separation of the doublet peaks corresponds to the Rabi frequency of the pump

field. For large negative ∆ (θ ≈ π/2) the resonance with state |Φ1〉, which is

here predominantly level |2, n− 1〉 as shown in Figure 5.13(b), occurs for δ ≈ 0,

while resonance with state |Φ2〉 (predominantly level |1, n〉 ) occurs for δ ≈ ∆.

When ∆ is large and positive (θ ≈ 0) as shown in Figure 5.13(c), the resonance

at δ ≈ 0 is associated with state |Φ2〉.
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5.6.2 Observed Autler-Townes Effect

The experiments were performed in the same setup with the STIRAP ex-

periment. The He∗ atomic beam axis crosses the axes of two co-propagating

laser beams at right angles. The axes of the two laser beams coincide, but

the sizes of two laser beams are different: the waists were 1 mm, 0.4 mm, and

the heights 2 mm, 1.5 mm, for blue and red, respectively. The power of the

pump field was 40 mW (ΩP ∼ 35 MHz) and the probe field power was 50 mW

(ΩS ∼ 3 MHz). To detune the pump field we tilt the direction of pump beam

instead of tuning the laser frequency itself [see Appendix C].

The excitation signals were obtained by monitoring the ion signal while

both laser frequencies were locked to the corresponding transitions while the

field plates were scanned through the Stark energy levels. Figure 5.14 shows

the experimental results.

As discussed in the previous section, each of two peaks appearing in the ion

signals can be attributed to a transition induced by the probe field between

the 23S1 Rydberg state and one of two dressed states |Φ1〉 or |Φ2〉. Since

the dressed states are constructed as superposition of state 23S1 and 33P2

with relative composition that depends on the strength of the pump field as

parameterized by a mixing angle θ, the intensities of the doublet peaks depends

on the detuning of the pump field.

When the power of the probe field were increased up to 300 mW, whose

Rabi frequency is comparable to that of the pump field, the coupling effect

to the Rydberg states needs to be considered and this effect causes more

complicated dressed states. As shown in Figure 5.15, the third satellite peak,
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Figure 5.15: Strong Probe beam effect
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which is other than |Φ1〉 and |Φ2〉, appears for ∆ = 0. When the pump field

was detuned the dressed energy levels were shifted and it seems that |Φ2〉 was

shifted to the side of the state at satellite peak.
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Chapter 6

Focusing the Helium Atomic Beam

6.1 General Background

Atomic beams can be manipulated in inhomogeneous electric fields due to

the interaction of the electric field gradient with the induced electric dipole

moment of the atoms [95]. The dipole force acting on an atom in an inhomo-

geneous electric field E can be expressed as [96]

F = (p · ∇)E =
α

2
∇|E|2 (6.1)

where p and α are the dipole moment and the polarizability of the atom,

respectively. From F = −∇U , the Stark potential energy of a ground-state

atom is given by

U = −α

2
|E|2 (6.2)

This shows that the force on ground state atoms exposed to an electric field

gradient is always directed towards the stronger field, and it is thus impossible

to focus an atomic beam with a thin electrostatic lens with a rotational sym-

metry around the atomic beam axis [97]. To focus ground state atoms in both
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transverse directions, therefore, at least two lenses in an alternating gradient

configuration are required [95]. Consider the atomic beam propagating in the

z-direction. The focusing (defocusing) in the first lens is in the same direction

as the defocusing (focusing) in the second lens. Thus the focusing in both

transverse directions (x- and y- directions) is achieved, but there is imperfect

ratio of focusing in two directions because of unequal magnification through

two lenses. In order to compensate unequal magnification the third lens is

required [98]. Using an electrostatic lens with three focusing elements in an

alternating gradient configuration, the imaging of a neutral atomic beam has

been demonstrated [95, 98]. Due to the small polarizability α (on the order

of 10−39 Fm2), at least a few kV of electric potential had to be applied to an

electrostatic lens in these experiments.

In our experiment, we take advantage of the relatively large polarizability

of Rydberg atoms, which scales with the principal quantum number as ∼ n7

(Table 4.1). Thus, moderate electric field gradients are sufficient to focus a

beam of Rydberg atoms in the same configuration as used in Ref. [95, 98].

6.2 Electrostatic Hexapole Lens

In order to focus Rydberg helium atoms, we designed an electrostatic

hexapole lens, which consists of six electrodes instead of using three pairs

of electrodes along the beam axis as shown in Figure 6.1. This configuration

produces a field gradient that increases linearly with the distance from the

center of the hexapole.
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Figure 6.1: Electrostatic hexapole lens. The atomic beam propagates in the

z-direction.

In cylindrical coordinates, the electrostatic potential can be expressed as

the following multipole expansion [99]:

U(r, θ) = −E0r0

[ ∞∑

n=1

an

n

(
r

r0

)n

cos(nθ) +
∞∑

n=1

bn

n

(
r

r0

)n

sin(nθ)

]
(6.3)

where E0 is the central field, r0 is a scaling length, and an (bn) are the expansion

coefficients. r =
√

x2 + y2 is the radial distance from the symmetric center,

and θ = tan−1
(

y
x

)
. The n = 1 terms in Eq.(6.3) represent a constant electric

field, while the n = 2 and n = 3 terms are the quadrupole and hexapole fields.

To achieve the symmetric magnitude of the field under reflection on the x-

and y- axes, we can set bn = 0. For hexapole fields (n = 3), Eq.(6.3) can be

simplified to

U (r, θ) = −U0

(
r

r0

)3

cos 3θ (6.4)

where U0 = E0r0
a3

3
. Assuming that the induced dipole moment p is parallel
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to the electric field and independent of the field strength leads to the force

acting on a dipole p in the hexapole field from Eq.(6.4)

F = −6pU0

r3
0

r (6.5)

Thus, the magnitude of the radial force is proportional to the distance from

the beam axis. That is, the trajectory of the atoms is governed by an equation

for harmonic motion with the spring constant k = 6pU0

r3
0

. Figure 6.2 shows the

plot of equipotential lines for the hexapole electric field.

Figure 6.2: Equipotential lines for the hexapole electric field

Consider an atom with mass m and velocity v passing through the electro-

static lens during a time interval ∆t (= s/v) as shown in Figure 6.3. Momen-

tum conservation yields

F∆t = mv sin α (6.6)
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Figure 6.3: (a) Cross section of the hexapole lens (b) Atomic trajectory passing

through the hexapole lens
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Using Eqs.(6.5) and (6.6), the focal-plane position l can be expressed as

l =
mv2r3

0

6spU0

, (6.7)

where r0 and s are the internal radius and length of the hexapole lens, respec-

tively. U0 is the hexapole rod voltage. Eq.(6.7) shows that the focal position

does not only depend on atomic properties (m, v, p) but also on the lens pa-

rameters (s, r0, U0).

Considering Figure 6.3(a) and Eq.(6.1) gives

cos ϕ ∝ 6pU0

r3
0

, (6.8)

where ϕ is the angle between the electric dipole moment p and the electric

field E. Thus, the direction of p when passing the hexapole lens determines if

the beam is diverging or conversing.

6.3 Experimental Results

To ensure an effective interaction between Rydberg atoms and the field

created by the electrostatic lens, the distance between the interaction region

and the lens had to be chosen carefully. Considering the lifetime (τ ∼ 40 µs)

and the longitudinal velocity (vl ∼ 1500 m/s) of the He∗ atomic beam in the

n=26 Rydberg state, for example, it is obvious that the distance must be less

than 6 cm. Once the Rydberg signal has been observed with the ion detector,

the electric potentials, U+ and U− in Figure 6.3(a), are adjusted to find the

values which give the brightest image on the phosphor screen detector. An

image taken during the experiment and intensity profiles of the image along
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two transverse directions (x and y axes) are illustrated in Figure 6.4. The

image in Figure 6.4(a) shows the atomic beam profile when the red beam was

turned off. Figure 6.4(b) is the image when the Rydberg atoms were created

by the two- photon transition, where the applied potentials were U+ = 211 V

and U− = 0 V. The intensity profiles of the focused He∗ beam are plotted

in the horizontal (x-axis) and vertical (y-axis) directions as shown in Figure

6.4(c) and (d). The values in FWHM (Full Width at Half Maximum) along

the x- and y-axes are about 0.6 mm and 3 mm, respectively.

We assume that the asymmetric shape of the focused spot is caused by the

profile of thermal atomic beam passing through the field plates (dimensions in

Figure 3.5). Even if the image of the atomic beam in Figure 6.4(a) has a longer

side along the y-axis due to the rectangular shape of slit ( 0.5 mm × 2 mm

longer side in the y-axis), most of the atoms which are vertically spread by

no more than the height of the field plates (∼ 5.7 mm) and might thus be

cut in the outlet of the field plates. But the spread in the x-axis is opened

due to the open-side of the field plates. Thus, the shape of the atomic beam

passing through the electrostatic lens can be almost rectangular whith a height

of ∼ 5.7 mm and a width much larger than its height. The overall spot size

may also depend on the velocity distribution which causes the chromatic aber-

rations as explained the above. Therefore, a laser cooled atomic beam can

guarantee a brighter (a colder temperature) spot through minimizing chro-

matic aberrations and the spread of the atomic beam. Figure 6.4(e) explains

why the focused spot is not located in the center of the atomic beam. A surface

plot of the focused beam is presented in Figure 6.5.
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atomic beam geometry
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Figure 6.5: Profile of focused atomic beam

120



Chapter 7

Conclusion

Precise control of atomic beams on the near-atomic scale is a crucial matter

in atom optics research. The goal of this experiment was to produce and focus

a high flux He∗ atomic beam. In order to do so, we used the STIRAP excitation

technique to efficiently create Rydberg atoms and take advantage of the strong

dipole interaction between electric fields and the Rydberg atoms.

Due to their different oscillator strengths, the Rydberg states give different

transition strengths, and thus we investigated the transition strengths for the

n = 26 Stark energy levels. Ultimately, the STIRAP excitation to the 263S1

Rydberg state was the best choice to achieve an efficient population transfer.

The Autler-Townes effect has been observed resulting in a measurement

of the Rabi frequencies of the lasers. Since STIRAP critically depends on

the Rabi frequencies. this measurement helped to optimize the choice of the

the Rabi frequencies and the beam sizes of the two laser beams for efficient

STIRAP excitation.

We have built an electrostatic hexapole lens to focus the Rydberg He atomic
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beam, and we observed a focused bright spot on our phosphor screen detector.

This result promises future control of the beam position since various combi-

nations of different voltages can be applied to each of the hexapole electrodes

to move the focal point of the lens.

As a future plan, the He∗ atomic beam can be used to do neutral atom

lithography in a direct deposition mode, where He∗ atoms with a high internal

energy are focused by the electrostatic lens to an extremely fine spot and

deposited onto a substrate, or in a lithography mode, where the focused He∗

atoms are used to expose a suitable resist material. With all these potential

applications, it is apparent that Rydberg atom optics using a He∗ atomic beam

can provide some new tools for manipulation of matter on the near-atomic

scale.
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Appendix A

Atomic Units

Quantity Definition in atomic units Value

Charge (e) Charge of the electron 1.60218× 10−19 C

Mass (m) Mass of the electron 9.108× 10−28 g

Length (a0) Radius of Bohr orbit (h̄2/me2) 5.2917× 10−9 cm

Velocity (v0) Electron velocity in Bohr orbit

(e2/h̄ = αc)

2.1877× 108 cm/s

Energy (e2/a0) Twice the ionization energy of H 27.2112 eV

Frequency v0/a0 = me4/h̄3 = 4πRy 4.1341× 10−16 sec−1

Table A.1: Taken from Ref.[66]. ( H : hydrogen )
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Appendix B

Spectroscopy Data for 23S1 →33P2 Transition

Quantity Value

Excited state lifetime (τ) 106.83 ns

Transition Linewidth (Γ/2π) 1.49 MHz

Saturation Intensity (Is = πhc/3λ3τ) 3.31 mW/cm2

Capture velocity (vc = Γ/k) 0.58 m/s

Recoil velocity (vr = h̄k/M) 25.6 cm/s

Doppler limit (vD =
√

kBTD/M) 27.25 cm/s

Table B.1: Doppler Temperature TD = h̄Γ/2kB, mass M = 6.646× 10−27 kg,

k = 2π/λ (λ = 388.98 nm), all data taken from Ref.[2].
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Appendix C

Calibration for Optical Molasses

A configuration of counterpropagating laser beams which is known as op-

tical molasses [2] has been used for laser cooling of atoms. The total radiation

pressure force on an atom in the low intensity regime (I/Is < 1, Is : saturation

intensity ) is given by [2]

F (v) = h̄k
Γ

2

I/Is

1 + [2(∆−k·v)
Γ

]2
− h̄k

Γ

2

I/Is

1 + [2(∆+k·v)
Γ

]2
(C.1)

where ∆ is the detuning of the laser frequency from the atomic resonance, and

the Doppler shift (k ·v) depends on the propagating direction of the laser light

(k) and the direction of atomic motion (v).

The plot in Figure C.1(a) shows that F (h̄kΓ) is nearly linear with velocity

for |v| < Γ/2k, so it is convenient to define a capture velocity as shown in

Table B.1. For example, the capture velocity is calculated as vc = 4Γ/2k for

∆ = 4Γ and this corresponds to 9.2vr for the 389 nm transition. This can be

easily calculated by the relation:

Γ

k
=

Γ

2π/λ
= λ · ( Γ

2π
) = (389× 10−9 m)(1.49× 106 /s) = 0.58m/s (C.2)
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Figure C.1: Plot of total radiation pressure force vs. velocity for (a) red

detuning and (b)three different blue detunings
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This value corresponds to 2.3 vr because the recoil of one 389 nm photon

leads to a change of 25.6 cm/s in atomic velocity [see Table B.1]. We can also

estimate the Doppler shift created by one photon recoil as

∆ωD = 2π · νD = kvr = (2π)
25.6 cm/s

0.0389× 10−3 cm
= (2π) · 658 kHz (C.3)

If our atomic beam with a longitudinal velocity vl of ∼ 1500 m/s passes

through the 389 nm laser beam orthogonally and is deflected by 3 mm on

the screen located 2 m downstream from the interaction region, then this

corresponds to a shift of 2.25 m/s in transverse velocity. From Eq.C.3, the

corresponding Doppler shift is (2π)× 5.8 MHz, which is 3.9 Γ or 8.8 vr.

The numerical plot for the bluemolasses is also given in Figure C.1(b).

Figure C.2 shows the deflection results for the different angles between the

atomic beam axis and the propagation direction of the laser beam. Using the

results of this deflection measurement we can utilize the detuning effect by

adjusting the propagation direction of the laser beam instead of tuning the

laser frequency itself.
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