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Abstract of the Dissertation

Coherent Manipulation of Rydberg Helium
Atoms in Inhomogeneous Electric Fields

by
Seung Hyun Lee
Doctor of Philosophy
in
Physics
Stony Brook University

2006

Coherent manipulation of atomic motion has been a subject of
increased interest in atomic physics because it provides the oppor-
tunity to perform precision spectroscopy. Since the first demonstra-
tion of laser cooling techniques, exerting controlled optical forces
on neutral atoms has made it possible to develop new tools for
working on the near-atomic scale. While most of these tools are
based on manipulating atoms with laser light, a different method
which exploits the interaction of Rydberg atoms with inhomoge-
neous electrostatic fields to control the atomic motion was proposed

in 1981.
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Atoms in Rydberg states have a large dipole moment because
their outer electrons are located far from the core. Due to the rel-
atively strong dipole interaction, therefore, the motion of Rydberg
atoms can be affected even by weak and moderate field gradients.
Ultimately, it is desirable to maximize the population in the Ry-
dberg states to increase the intensity of the beam focused by an
electrostatic lens. In a new approach to achieve a highly efficient
population transfer, we take advantage of the highly efficient Stim-

ulated Raman Adiabatic Passage (STIRAP) excitation technique.

In this thesis, we first present an investigation of the Stark-
shifted atomic energy levels and compare our observations to nu-
merical calculations. Once the state with the highest transition
efficiency has been identified we employ the coherent STIRAP exci-
tation technique in order to achieve a complete population transfer
from the metastable ground state to the target state via an inter-
mediate state in the three-level ladder system 23S; — 33P, — nL;
of triplet helium. In order to fulfill the strict conditions for STI-
RAP, we also need to know the Rabi frequencies of the laser fields.

For this purpose, the Autler-Townes effect is also examined.

Finally, we demonstrate an example of atom optics by focusing

the atomic beam with our electrostatic lens after preparing the

v



metastable helium atoms in one of the well-defined Rydberg states.
Possible applications of this new technique are nanofabrication or

lithography.



To my famaily

SungYeon, InHo and InHyuk
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Chapter 1

Introduction

1.1 General Background

There has been great interest in developing new techniques to exert con-
trolled force on the atoms and to manipulate atomic trajectories [1]. To control
the motion of atoms and exploit their wave-like properties it is crucial to in-
vent elements which have the same effect on atoms as mirrors, lenses, beam
splitters, etc. on light [2]. The possibility of the field of atom optics can be
traced back to Kepler [3]. The trajectory of a comet tail is directed away from
the sun because the light of the sun carries momentum and thus affects the
trajectory of the tail. If we explain this situation from the classical viewpoint
of the atom-field interaction, the light force on atoms comes from the dipole

potential due to the light [3]:
V(x,r,t) = —d-E(r,t) (1.1)

where d is the electric dipole moment, r the center-of-mass coordinate of the

atom, x the position of the electron relative to the nucleus, and E (r, t) is the



electric field. This fact explains the possibility that the atomic trajectories
can be manipulated by the dipole force of the field.

Although this classical picture of atoms moving in a comet tail without
regard to their overall wave-like character has been of great use, the expla-
nation of recent experiments on atom optics requires a quantum mechanical
atom-photon interaction model [2]. In 1923, Louis de Broglie proposed that
all massive particles should be thought of as waves [4] and that the wave-like
properties of any massive particle of mass M could be characterized by the

so-called de Broglie wavelength [3]

h
\ip = e (1.2)

where h is Planck’s constant and v the particle velocity. The first experimental
confirmation of Eq.(1.2) was done for the case of electrons by Davisson and
Germer in 1927 [5]. A further development was established by Otto Stern
and co-workers in 1929 who demonstrated that atoms can be reflected and
diffracted from metal surfaces [6].

At that time, it was exceedingly difficult to detect the wave-like properties
of thermal atoms because the dependence of the thermal de Broglie wavelength
on the temperature T ()\th x 1/ VT ) gives \;p, ~ 102 nm at room tempera-
ture [7]. Effects of such short wavelength are enormously difficult to observe.
Thus the results of those experiments can be regarded as the starting point of
experimental atom optics.

Further developments in this field depended critically on increasing the

thermal wavelength by lowering the temperature so that profound progress



towards manipulating atomic motion was directly linked with the invention of
the laser. One of the first experiments with lasers was done by Cook and Hill
[8], who suggested that an atom is reflected from a dielectric surface in the
thin transmitted evanescent wave of laser radiation. The evanescent wave is
formed on the dielectrics surface if blue detuned laser light is totally reflected
internally at a vacuum-dielectric interface. Thus the evanescent wave acts as
an atomic mirror.

For the first experimental observation of atomic diffraction Pritchard and
his coworkers [9] employed an optical standing wave as a diffraction grating.
In addition to atomic mirrors and diffraction gratings, there have been several
experiments to build coherent atomic beam splitters. In a first experiment,
Moskowitz et al. [10] showed that an atomic beam crossing a standing wave
is split into two symmetric peaks.

Among all these developments one of the most important achievement in
atomic physics was initiated by Wineland and Dehmelt [11] and Hansch and
Schawlow [12] who discussed new ideas for using laser light to cool atoms.
They realized that atoms can be cooled to very low temperature using laser
light pressure [2]. In fact, laser cooling techniques enable us to produce atomic
samples as cold as several micro-Kelvin. Even lower temperatures down to the
order of a few nano-Kelvin were achieved by a technique called evaporative
cooling [2]. which, in particular, made possible the first observation of Bose-
Einstein condensates (BECs) in 1995 [13] which ever since have been studied
intensively [14]. For high-resolution experiments, BECs have excellent prop-

erties: ultra-low temperature, high density, and a well-defined quantum state



[15, 16, [17].

The manipulation of the transverse motion of an atomic beam to in-
crease its brightness, that is, the number of atoms per second and steradian
(atoms/sr-s), has been a subject of interest because a well-collimated atomic
beam can be a useful tool for atom optics applications. However, the main
obstacle comes from the fact that electrostatic potentials V'(r) created up to
date are too weak compared with the typical kinetic energies of thermal atoms
[19]. In most cases, for example, the velocity spread of thermal atoms is on
the order of 500 m/s.

Consider an atom in a typical laboratory electric field of magnitude ~ 103
V/m with a gradient of about 10° V/m?. The polarizability a of the atom,
which is defined by the relation between the induced dipole moment d of
the atom and the electric field E as d = «aFE, is typically on the order of
~ 107% farad-m? [20]. Therefore, we can just get a very small acceleration
of ~ 107" m/s? for thermal atoms. This shows that the interaction of a
ground state neutral atom with an electrostatic field can be neglected. Hence,
it is important to either develop the methods to increase V(r) to gain more
control of the atomic external (motional) state, or to make the interaction
stronger through controlling the atomic internal (electronic) state. The optical
bichromatic force is an example for the former case and its application to nano-
lithography has been developed in our group [21, 22]. As an example of the
latter case, we can change the internal state of the atoms by exciting them to
high principle quantum numbers (n > 15) called Rydberg states whose huge

dipole moments will naturally cause a stronger dipole interaction. This is the



method we use in our experiment.
In this chapter, several key concepts of the manipulation of atoms with

lasers will be presented.

1.2 Atom-Photon Interaction

The motion of an atom traversing a laser beam can be derived starting

from the Hamiltonian of the atomic system [2, [3].
H=Hy+ Hap (1.3)

where H 4 is the atomic Hamitonian and H 45 describes the interaction between
the atom and the laser field. For a two-level atom of mass M with lower
electronic level |g), upper electronic level |e) and Bohr transition frequency
wp, the atomic Hamiltonian can be expressed as [3]

p2

Hy= ——
A7 oM

+ Tiwg |€) (e (1.4)

Here p is the atomic center-of-mass momentum. The internal energy of the
lower state is set to zero. In the optical field region, the electric dipole approx-
imation is valid to describe the interaction between optical fields and atoms
[23], and we have [3]

Hup = —d - E(r,t) (1.5)

where d is the atomic dipole moment, and can be represented as

d = qr([e) (9] + |g) (el) (1.6)



with the electric charge ¢. If we treat the field classically, it can be written in
the general form

E(r,t) = ex(r)Ey(r) cos|wt + ¢(r)] (1.7)

where w is the frequency of the field and ¢ the phase. k represents the po-
larization direction of the electric field in a spherical basis. If we choose the
quantization axis properly, k£ can be a single value 0 or +1 for linear- or
o*-circular polarized light. This is associated with the components in the

Cartesian space as follows: ey = e, and ey = :F%(ex + ie,). Using Egs.(1.5)

-(1.7), the interaction Hamiltonian can be expressed as

Hap = hSdcos(wt + @) { |e) (g] + |g) (e| } (1.8)

Here we define the Rabi frequency €2 associated with the strength of a transi-

tion between two atomic states |g) and |e) by the expression [24]
L = —qEq (| ex - r]g) = —qEo (e[ 7k |9) (1.9)

The procedure for evaluating the matrix element (e| 7 |¢g) in an atom with no
hyperfine structure such as helium is to first invoke the Wigner-Eckart theorem

[24, 25] to get
(elrelg) = (MSLJIM;|ry|n'S'L'J M})

J 17
= (=17 ™M (nSLJ|| 7y, ||n'S'L'J") (1.10)

~M; k M,

where (- - ) is a Wigner 3j symbol. The reduced matrix element, (nSLJ|| 7y ||n'S"L’'J'),



can be evaluated in terms of a reduced matrix element in L representation as

[24], 25]

(SLI| i [|n'S'L' Ty = 8(S,8")(—1)STEH+ (20 + 1) (20 + 1)

L J 8
X (nL||ry ||/ L) (1.11)

-J L' 1

where {---} is a Wigner 6j symbol and 6(.5,5") = 0 unless S = S’. Substi-

tuting Eq.(1L.11) into Eq.(1.10) leads to

J 1 J
(el rilg) = (—1)2FSHE-MHt Jo7 1) (200 + 1)
—M; k M,
L J S
X (nL|| ry ||n' L") (1.12)
—J L' 1

As a selection rule, k = M, — M should be satisfied. The values for the
3j and 6j symbols can be found in Ref.[24]. In addition, the reduced matrix
element is related to the spontaneous emission rate I' and wavelength A of the
transition between the upper state |[nL) and the lower state and |n'L’) as [24]

3NT

32m3ca

1/2
(nL ||| n' L'y = V2L + 1 ( ) S(L',L—1) (1.13)



where « (: 47350 %QC) is the fine structure constant and c the speed of light.

Using this result (1.13)) and the electric field amplitude Ey = w/j)—{: (where [ is

the intensity of the radiation field), the Rabi frequency can be obtained.

The saturation parameter sq is also defined as [2]
so=1/I, =20 /T” (1.14)

where [ is the saturation intensity which is given in Eq.(1.16).

1.3 Excitation Scheme of Metastable Helium

The metastable helium (He*) beam in our experiment is produced by a
DC glow discharge. Then the 23S, metastable state can be regarded as the
ground state in the 3-level ladder scheme that we use because of its long
lifetime (~ 8000 sec)

Figure [1.1 shows the excitation scheme of He* from the state 23S; to the
Rydberg state 26S5. The excitations are done with two linearly polarized laser
beams, a blue one (A = 389 nm light, which is generated by an external
frequency-doubling cavity) for the first transition (23S; — 3*P,), and a red one
(A =796.762 ~796.763 nm light). We use a two-step process for experimental
ease of light generation.

In order to see how the Rabi frequencies are affected by the polarizations
of the applied fields, we first consider the transition |1) — |2) with o*-circular
polarized beams. In this configuration, the atoms are optically pumped into

the ground state sublevel M/, = 1. Therefore, the relevant transition is M’ =



|3> 26S

796.762
~796.763 nm

3 -2
|2>&

389 nm

3
mi

MJ='1

+1

Figure 1.1: Excitation scheme of He* from the 23S; metastable ground state to

the 26S Rydberg state bond by only ~ 500 GHz using two linearly polarized

laser beams.

1 — M; =2 and we get

(3Py My || 251 M) = \/1/3 (3P ||ry|| 25)

(1.15)

Substituting Eq.(1.15) into Eq.(1.9), and using Eqs.(1.13) and (1.14) leads

to

mhe

L=
3N

I

(1.16)

Here we use I'y as the spontaneous emission rate of level |2) (33P) which

can be evaluated from Eq.(1.13)) using the reduced matrix element (3P ||r|| 25)

0.9 ag ( ap : Bohr radius). This gives the values I'y =

21 x 1.49 MHz, which

corresponds to a lifetime of 7 = I'; ' = 106.83 ns for the 33 P, state, and we get



I, = 3.31 mW/cm? for the A = 388.98 nm transition [2]. Thus the Rabi fre-
quency, y = Fg\/8/>2 (Qo : Rabi frequency for the transition of |1) — |2) with
circular polarization beams), can be evaluated using Eq.(1.14) if the intensity
of the radiation field I for the transition is known.

For the linearly polarized case, the matrix elements [Eq. (1.12)] can be

expressed as

BPMy|r| 25 M)) = §-1/1/3 (3P ||ri]| 25),

for o+—pol.

V2/3 forM; =M} =0
B = (1.17)

\1/2 forM; = M) =+1

There are three different contributions to the transition strengths from
the states having M; = 0,41 and the Rabi frequencies for these states can
be expressed by (0) = \/2/3 Qo and Q (£1) = /1/2 Qg for M; = 0
and M; = +1, respectively. But these values are approximately equal, and
we can thus take the average Rabi frequency for the linear polarization case
to be € =~ 0.75 Q. In principle, the evaluation of the Rabi frequencies
for the second excitation, |2) — [3), to the Rydberg states follows the same
procedure as explained the above. The reduced matrix element was calculated
(26S ||rg|| 3P) = 0.079 ap and the lifetime of the state 26S is evaluated to be

~ 40 ps.

10



1.4 Motivation and Outlook of Thesis

In 1981, T.Breeden and H.Metcalf [1] suggested that a non-uniform elec-
tric field can be used to decelerate a beam of highly excited thermal atoms,
whose electric dipole moments are large because they scale as the orbital ra-
dius (r ~ n?). In van der Straten’s group, the intensity of the flux in their
experiment was increased by focusing the atoms with a magnetic hexapole lens
[26]. These results reveal that atoms in Rydberg states can also be focused
with inhomogeneous electro-static fields produced by a electrostatic hexapole
lens.

The purpose of this experiment is to manipulate the atomic trajectories of
helium atoms using the strong dipole interaction of the atoms with a moderate
electric field. A strong dipole interaction in a moderate electric field is based
on a large atomic dipole moment which is one of the exaggerated properties
of Rydberg atoms. In our system, Rydberg helium atoms are created driving
the optical two-photon transition from the metastable ground state to highly
excited Rydberg states. The energy level structure for an atom in a highly
excited state is dominated by the Stark interaction. Thus, understanding
the behavior of the Stark energy level is a prerequisite for carrying out this
experiment.

The properties and the Stark energy levels of Rydberg atoms are described
in Chapter 4. In order to increase the transition efficiency to the Rydberg
states we employ the Stimulated Raman Adiabatic Passage (STIRAP) tech-

nique, whose details are explained in Chapter 5. In addition, the method to
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produce the 389 nm blue beam is presented in Chapter 2. The vacuum sys-
tems and the laser systems including the feedback systems used to stabilize
the laser frequencies are described in Chapter 3. Details on the construction
of the electrostatic lens and a brief numerical calculation associated with the
potential produced by the lens can be found in Chapter 6. A discussion of all

the experimental results will be the final Chapter 7.
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Chapter 2

LBO-based Second Harmonic Generation

(SHG)

2.1 Introduction

We employ the transitions 235; — 33P, — nL; (nL; : Rydberg states)
of the three-level cascade scheme (see Figure 3.1) to excite metastable helium
atoms to Rydberg states. Therefore, a laser beam at A\ = 389 nm for coupling
the two states 225, — 33P, is required. As it is also pointed out in Section
5.4 in order to produce a highly efficient population transfer via the STIRAP
technique, this 389 nm beam must have a high enough Rabi frequency (> few
tens of MHz) and its optical frequency also needs to be stabilized. In our
system, we can achieve this by second harmonic generation (SHG) of a con-
tinuous wave Ti:Sapphire laser in an external enhancement cavity containing
a nonlinear LBO (LiB305) crystal. More thorough and elaborate discussion of
SHG can be found in [19, 27, 28, 29, 30, 31, 832}, 33]. Therefore the theoretical

review of SHG in this thesis will be focused on the case of the LBO crystal
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used in this experiment instead of describing all different types of crystals.
The stabilization methods of our doubling cavity will be also discussed in this

chapter.

2.2 Second Harmonic Generation

The polarization P induced in a medium when a monochromatic plane

wave, E (k,w) = eFexp{i(k-r —wt)}, is applied can be expanded as

P (k,w)=PY (k,w) +P? (k,w) +P® (k,w) + - - (2.1)
with
PU(kw) = ex (k,—w;w): E(kw),
P(Z) (ku w) = E;0X(2) <k7 _2(")7 W, w) B (ku w) E (ka w) )
P® (kw) = gx® (k, —3w;w,w,w): E(k,w)E (k,w)E (k,w) (2.2)
where Y is the nth — order nonlinear susceptibility of the medium whose

dependence on the wave vector k can be neglected because its effect is practi-
cally very small. Therefore, using Einstein’s summation convention, the second

order polarization vector P (w) in a medium may be represented by

P = coxfin BiEm (2.3)

X,(jfn is a (3 x 3 x 3) third-rank tensor whose elements are restricted by the

spatial symmetry of the crystal structure [34]. It is especially convenient to

rewrite X,(jzn in a contracted form, in which the two symmetric subscripts [
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and m are replaced by a single subscript j such that
xx— 1, yy — 2, 2z — 3, yz— 4, zr — 5, xy — 6 (2.4)

Using this contracted matrix form, the so called 3 x 6 Kleinman d;;-tensor

[33, 35], Eq.(2.3) can be written as

E2
Ej
P, din dyp diz dig dis dis
E2
B, T dy do daz dyy das das x (2:5)
2E,E,
P, d31 dsp dzz d3q dzs dsg
2F.F,
2E,F,

For the majority of crystals, only a few of the d;; coefficients have to be
known. In an LBO crystal, for example, symmetry requires that all the d;;
vanish except ds;, ds2, and dss [27] . Although we can calculate the second har-
monic polarization using the above equations, this is only true for infinitesimal
volume elements. That is to say that only the local second harmonic polar-
ization can be calculated according to Eqs.(2.3) and (2.5). On a macroscopic
scale, the total second harmonic polarization is the sum of the individual con-
tributions from all the infinitesimal elements of the crystal. For efficient second

harmonic generation, these infinitesimal contributions throughout the material
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must add coherently. Due to inevitable material dispersion, however, waves
of different frequencies propagate at different phase velocities. Consequently,
the problem of phase-matching between second harmonic fields generated at
different positions in a material should be considered.

For simplicity we consider the one-dimensional case in a material of length

L and assume a fundamental wave of the form [30]:
EW (z) = EW (0) - e~ (2.6)

where k,, is the wave vector for the optical frequency w and the refractive index
n,, which is defined by k, = n,w/c ( ¢ : speed of light in free space).
The second harmonic polarization can be calculated using Eq.(2.3), and the

susceptibility tensor x® reduces to the one scalar coefficient d. £
P@ () = 2d.;; EW (2) BEW () = 2dos EW (0) EW (0) - e72ker(2.7)

where d.ss is a function of the suitable element of the Kleinman d-tensor. For
example, this effective tensor element d.sf = dsz - cos©Op can be used in an
LBO crystal (©p : phase matching angle) [27]. The polarization P®(z) acts

as a driving force in the Maxwell equations for £®)(z) [32, 31, 133],

0? n\ 0° 0?
525 = () g = ngh® (28)

Now E®)(x), the solution of the wave equation (2.8), travels through the
material with frequency 2w and wave vector ko,. At an arbitrary position z’
in the material the second harmonic wave becomes

E@ () = E@ (z).¢ el

2

. ‘E(l) (0)‘ o k2w p=i(2ko—kaw)z (2_9)
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Thus the total second harmonic field generated in a material for (0 < z < L)

can be calculated by integrating all contributions from E®(z'), and we finally

get [32]
o in (LAE/2)
E(Q) ! tkowx’ JiLAKE/2 SlIl( 21
total (23 ) x e € Ak’/Q ( 0)
with
4
Ak = ki, — 2k, = 7” (N — 0} (2.11)

where ) is the wavelength of the fundamental field.
From Eqs.(2.10) and (2.11), the coherence length L., which is a measure
of the maximum length of the nonlinear medium that is useful in producing

second harmonic waves, can be defined as

B A
B 2 {an - nw}

C

(2.12)

For some typical values (A = 780 nm , ny, — n, = 107%) we find a coherence
length of 39 ym. The proof of the coherence length effect is given in an ex-
periment by Maker et al [36]. The generated second harmonic beam intensity
Iy, can be calculated at the exit of the nonlinear medium (z = L) [37].

87 IZL? sin® (LAk/2)
T cegn?na (Ak/2)?

(2.13)

]2w

The maximum intensity of second harmonic light 13'** is achieved at Ak = 0,
that is, no, = n,. But there is always dispersion in a medium like LBO, and
the intensity I, decreases dramatically with Ak (# 0). Therefore, the key
to achieving high efficiency second harmonic frequency light is increasing the

coherence length L.
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2.2.1 Nonlinear Crystal

Consider an electromagnetic wave (propagation direction k) incident on
the surface of a birefringent nonlinear crystal. The polarization of the incident
wave can be split into two orthogonal components along two different axes of
the crystal. The Fresnel equation describes that these two waves see different
indices of refraction and thus propagate with different angles in the crystal, a
phenomenon referred to as birefringence [31]. The general method to find the
index of refraction for the different polarizations of a propagating wave is to
use a three dimensional ellipsoid [32],

IQ y2 22
St st =1 (2.14)
Yy z

T

where z,y, z are the principal axes of a crystal, and n; (i = x,y, z) is the index

of refraction along the axis i.

Index
ellipse

Index

ellipsoid

Figure 2.1: Index ellipsoid and Index ellipse.
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For the case of the wave traveling in the direction of k, the plane perpen-
dicular to k going through the center of the ellipsoid intersects the ellipsoid
given in Eq.(2.14) and forms an ellipse, whose major and minor axes determine
two polarization directions in a crystal as shown in Figure 2.1. The length of
each axis represents the index of refraction along the axis, n, and n;, . Sup-
pose the ellipse has a cylindrical symmetry about the z-axis and the wave is
propagating along the z-axis. In this case the intersecting plane normal to
the direction of propagation (z-axis) will form a circle and the wave sees only
one refractive index. We call the propagating direction in which the refractive

index is independent of polarization the optical axis.

(b) z

Optic axis

SN

n3y

(N1 <nN2<n3)

Figure 2.2: Refractive index surfaces. (a) uniaxial crystal (b) biaxial crystal

By the directional dependence of the refractive index, a crystal can be di-
vided into two classes - uniazial and biaxial [32]. As shown in Figure 2.2,

there are always two different refractive indices seen by a propagating wave
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in any direction except one special direction (optical axis) of the wave vector.
This fact makes it possible for the wave propagating in the crystal to have
two different polarizations. For an uniaxial crystal, only the wave propagating
along the z-axis sees one index of refraction value. So there is only one opti-
cal axis [Figure 2.2(a)]. However, if there is no cylindrical symmetry axis as
shown in Figure 2.2(b), all three refractive indices are different (n; < ng < n3)
and the optical axis is along a direction other than any of the principal axes.
There are two optical axes, one in shown in Figure 2.2(b) and its symmetry
equivalent, in a biaxial crystal. In a birefringent crystal, the two waves whose
polarizations are orthogonal to each other have special names - ordinary and
extraordinary wave. The ordinary wave has a polarization perpendicular to
the principal plane formed by the optical axis and the propagation direction.
For the ordinary wave, the crystal has a constant index of refraction n,. The
polarization of the extraordinary wave lies in the principal plane, and the re-
fractive index for the extraordinary wave n. is dependent on the angle between

the optical axis and the propagation direction k.

2.2.2 Phase Matching

In a birefringent crystal the refractive index depends on the direction of
the polarization of the wave propagating in the crystal. Using this property,
the index of refraction for the fundamental and second harmonic wave can be
matched in a nonlinear crystal [27]. Figure 2.3/ shows the directional depen-
dence of the refractive index for a biaxial LBO crystal.

It is shown that in the XY (6 = 90°) and XZ (¢ = 0,60 between Z and
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() (e) (0) (0)
No 20 No Ny

(b)

Figure 2.3: Refractive index surfaces for the birefringent LBO crystal. (a)

biaxial case and (b) negative uniaxial case (n(? < n(®) 0 = 90°)

optical axis) planes the crystal can be thought of as a negative uniaxial crystal
because of n(? < nl®) whereas it shows the same behavior as a positive uniaxial
one in the YZ (¢ = 90°) and X Z(¢ = 0, 6 between X and optical axis) planes.
In positive birefringent crystals, for which n{® > n(°®) | the second harmonic
wave is polarized along the ordinary axis that gives the lower refractive index
néi,) At point A, one can realize the phase matching condition n(QZJ) =n9(0).
Therefore, two fundamental waves with the same polarization create a second
harmonic wave. This type of phase matching is called T'YPFE-I phase matching.
It is also possible to create a wave at the second harmonic frequency with two

fundamental waves having orthogonal polarizations to each other, referred

to as TYPE-II phase matching. In this case the phase matching condition

(0) 1

N5y = 5 [nfj’) + nf)(ﬁ)} must be satisfied, and it is not favorable to realize in

practice.
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In the case of a negative birefringent crystal (n\® > n(®)) the polarization
of the second harmonic wave is along the extraordinary axis. At point B in
Figure 2.3(b), phase matching can be achieved for ni?) (¢) = n'), such that
the fundamental waves polarized along the ordinary axis nfj’) create a second
harmonic wave along the extraordinary axis. Figure 2.3(b) shows the negative
uniaxial phase matching condition in the case of # = 90°. The phase matching
condition explained above is based on tuning the angles (6, ¢), a technique
referred to as critical phase matching, whereas non-critical phase matching is

based on accurate temperature control utilizing the temperature dependence

of refractive indices for some crystals.

Figure 2.4: Critical phase matching in a uniaxial negative birefringent

crystal.[38]

As mentioned above, a biaxial LBO crystal can be thought of as a negative
uniaxial crystal when satisfying the phase matching condition at point B in
Figure 2.3(b). Therefore we may consider phase matching practically with

Figure 2.4/ [38]. Suppose the second harmonic wave is generated at a point A’
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when the fundamental wave k,, | travels along the line AB. The polarization
of the second harmonic wave is perpendicular to the polarization of the fun-
damental wave in this configuration, the so-called Type-I phase matching [32].
Therefore, the second harmonic component klzw,u in the crystal will be polar-
ized along the principal plane and will also have a different phase velocity. In
order to achieve the phase matching condition, the angle 6 can be adjusted by
rotating the crystal about an axis perpendicular to the principal plane. This
is called critical phase matching.

As obvious from the description of phase matching in a birefringent crys-
tal, there is a geometric walk-off of the second harmonic wave from the fun-
damental wave, specified by the walk-off angle p. In Eq.(2.13), the conversion
efficiency increases quadratically as a function of crystal length L. The effect
of the walk-off is a reduction of the spatial interaction length, which restricts

the intensity of the second harmonic wave.

2.2.3 SHG for a Focused Gaussian Beam

The intensity of the second harmonic wave is given in Eq.(2.13) for the
case of a plane wave. The equation shows that the intensity is proportional
to the square of the length of the crystal and to the square of the intensity of
the fundamental wave. In practice, the output mode of most laser systems has
a Gaussian transverse beam intensity profile, implying that a tightly focused
beam in the crystal will ensure the greatest power conversion efficiency due
to a higher power density. However, this also decreases the Rayleigh length,

which is defined by zg = mwo/A ( wo: beam waist at the focal point, A :
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wavelength )[31], and increases the divergence angle of the beam. For TYPE-I
phase matching, in addition, there is always a walk-off effect that limits the
spatial interaction length. The optimal second harmonic generation coefficient
vsua in the case of TYPE-I phase matching under the consideration of these
effects was derived by Boyd and Kleinman in 1968 [35]:

Py, 1287?2w2d2ffkwL

€
VSHG = 5y —
Pw

h(B,€) (2.15)

392
CNE Ny,

The factor h(B,€) is the Boyd-Kleinman focusing parameter that depends
on both the walk-off parameter B = puaik—off (Lku,)l/2 /2 and the focusing

parameter £ = L/wik,,.

2.3 Selection of Nonlinear Crystal

When selecting a nonlinear crystal for frequency doubling of a 780 nm
Ti:Sapphire laser, the most important thing to consider is how to get the
highest possible conversion efficiency. The Eqs.(2.13) and (2.15) show that
a higher conversion efficiency can be achieved through higher power density,
longer crystal length, smaller phase mismatching, and larger nonlinear coeffi-
cients. However, there is always some limitation, for example, the nonlinear
crystal coefficients are intrinsic properties that cannot be altered and the max-
imum input power is limited by the damage threshold of the crystal.

In Type-I critical phase matching, the fundamental wave is incident on

a crystal with the phase matching angle. A small amount of divergence of
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the beam and a small deviation from phase matching angle cause a dramatic
reduction of the conversion efficiency. If the beam divergence angle is larger
than the acceptance angle of the crystal, only a fraction of the input beam is
involved in the doubling process. Among many different nonlinear crystals,
three candidates can be considered for frequency doubling of 778 nm light:
BBO (beta-barium borate), LBO (lithium tri-borate), and LilO3 (lithium io-
date). More details on the optical properties of these crystals can be found
in |29, [40]. Of these three candidates, LBO has the highest damage threshold
(2.5 GW/cm?), the smallest walk-off angle (17 mrad), and the largest accep-
tance angle (4.3 mrad) at a wavelength of 780 nm. For Type-I critical phase
matching in the XY-plane ( see Figure 2.3 ) the nonlinear coefficient d.ss is
given by d.ys = dsycos ¢ and ¢ = 33.73°. The dimension of our LBO crystal
is 3 x 3 x 18 mm. In this case, the maximum second harmonic efficiency can
be estimated to be ysgg = 1.6 x 107* W~ and the estimated optical waist
size in the crystal is wy = 31 pm. For a more detailed description of our LBO

crystal, see Ref.[29].

2.4 Performance of the SHG Cavity

The power of single pass second harmonic generation through the LBO
crystal is expected not to be enough for the STIRAP experiment because the
value of vgp¢ is only a small number on the order of 10~* W~!. To achieve
higher second harmonic power, thus, a significantly higher fundamental power

is needed. A promising tool to increase the available fundamental power is
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an external enhancement resonant cavity (EEC). For a theoretical calculation
of the second harmonic output of an EEC, we can use the external resonator
SHG theory of Ashkin et al. [41]. For a given incident fundamental power P,
the circulating power P, of the fundamental light on resonance in the doubling
cavity becomes [42]
p—— D (2.16)
(- V)

Here, Ry and T} (= 1 — Ry) denote the reflectivity and the transmission

coefficient of the input coupling mirror My, respectively | see in Figure 2.5 |.

R,, is the reflectivity of the cavity except the input coupler M;.

M4 LBO M3

Figure 2.5: External Frequency Doubling Cavity
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Thus R,, can be thought of as the effective round trip loss caused by the
remaining cavity mirrors (Ms ~My) as well as losses within the LBO crystal.
From Eq. (2.16), the maximum circulating power P. is achieved when the
reflectivity Ry is equal to the cavity loss R,,. This condition is referred to
as impedance matching to maximize the power inside the cavity. Now, if we
consider the generation of second harmonic light by the circulating power,
conversion losses caused by SHG itself should be included and the Eq.(2.16)

should be modified to [38, 42]

T\P
P, = e (2.17)

[1 — \/RlRm (1 - ’)/SHGwa)]Q

Thus, we can calculate the output power P, of SHG with respect to the
various losses and transmissions of the input coupler using the relation, P, =
vsuaP?, as shown in Figure 2.6/ [43)].

The maximum total measured output power of our doubling cavity was ~
450 mW. But if we filter the transmitted red component out of the total output,
a pure blue power Py, of ~ 200 mW was measured. This corresponds to total
losses of about 2 % from Figure 2.6. According to Ref.[43] possible sources
of losses (~ 1 %) are reflections on the surface of the LBO crystal (0.2 %),
absorption and scattering due to impurities in the LBO crystal (0.7 %), and the
cavity mirrors (3 x0.05 %). Therefore, most losses are caused by misalignment

of the cavity.
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Transmission of input coupler

Figure 2.6: Calculated variation of the power P, of the SHG with respect
to the transmission 77 of the input coupler for various losses RiR,,. The

calculation is performed with P, = 1.5 W and v = 1.6 x 107 W~

2.5 External SHG Cavity

Our four-mirror ring resonator, shown in Figure 2.5, is mounted on an
aluminum based optical breadboard that is isolated from the dust free optical
table by a thick sheet of rubber. The fundamental beam is coupled into the
doubling cavity through a 1- inch diameter flat mirror M;, whose transmission
is about 7' = 1.8 ~ 2.4 % at 778 nm. The other flat mirror My and the two
curved mirrors (Mj, M) are high-reflection (HR) coated for 778 nm. The
radius of curvature and the diameter of both curved mirrors is 150 mm and
12.7 mm, respectively. Furthermore, My has a transmission of more than 95 %
at 389 nm.

To be able to apply a feedback signal to lock the cavity, the small mirror

Ma( 6 mm diameter) is mounted on a PZT (piezoelectric stack) whose max-
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imum displacement is 3.0 + 1.5 pym with an applied voltage of 100 V. The
bandwidth is 250 kHz so that a fast actuation is possible. In addition to the
fast feedback signal a slower PZT is attached to the curved mirror M3 because
the fast PZT has a limited range of motion. This slow mirror M3 is driven by
a higher voltage (up to 1000 V) so that it is possible to compensate changes
in a larger range (~ 4 pum) on a slower time scale (~10 Hz). Therefore, we
can adjust the cavity length roughly to the resonant position and the fast cor-
rection signal can be applied to the cavity. The LBO crystal is mounted to
a copper block so that any heat generated by the high power laser beam can
be dissipated from the crystal. The copper block is attached to a stage that
allows to translate and to tilt the crystal. An anti-reflection coating on the
two optical facets gives a reflectivity of less than 0.25 % for the fundamental
beam and a transmission coefficient larger than 95 % for the second harmonic
beam. More practical information on how our doubling cavity was built can

be found in Ref.[29].

2.6 Alignment Procedure and Electronic Sta-
bilization

2.6.1 Cavity Alignment

We have learned how to align the frequency doubling cavity on the basis
of the instructional manual from Tekhnoscan [44], and I quote the manual in

this section because it describes a suitable procedure for our doubling cavity.
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First, the doubling cavity can be roughly aligned without scanning its length.
Thus all control electronics should be turned off.

The infrared laser beam (778 nm) is guided using mirror M (in Figure 2.7)
such that it comes through the center of the input coupler M; and hits the
small mirror My. Then, the beam from M, is guided to the center of the
spherical mirror M3 by adjusting Ms. Now, the control knobs of M3 are used
to make the beam pass through the LBO crystal and hit My. The first step to
achieve a closed loop is to make the beam from M, hit the same spot as the
first transmitted input beam on the input coupler M;. Second, M; is adjusted
so that the transmitted incoming beam from mirror M and the reflected beam
from M; that already ran one round trip in the cavity travel along the same
path. Further adjustment should be continued until an infrared flash appears
inside the doubling cavity. Once the light flash is observed, the ramp generator
to scan the cavity by applying a high voltage to the PZT?2 is turned on [see in
Figure 2.8(b)].

After fine alignment of the mount for the LBO crystal a blue spot appears
in the output region. To take a part of the blue beam, which in turn hits a
photo diode detector (not shown in Figure 2.7), a beam splitter is inserted in
the output beam of the doubling cavity. The photo diode (PD) may easily be
saturated, so that a filter must be positioned in front of the PD. The output
cable of the PD is connected to an oscilloscope which should be synchronized
by the trigger signal (TTL) from the ramp generator. Further fine alignment of
the cavity mirrors (M; ~ My ) is required to optimize the signal and maximize

the height of the transmission peaks.
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Figure 2.7: Schematic design of SHG : M-mirror, L-mode matching mir-
ror, HWP-half wave plate, QWP-quarter wave plate, GP-glass plate,
PBS-polarization beam splitter, P-polarizer, F-neutral density filter, PD-

photodiode detector
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Figure 2.8: Control Electronics for the doubling cavity : G-gain control, S-
switch, X-summing junction, P-proportional, I-integral, HV-high voltage am-

plifier
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Under certain conditions, the height of some of the peaks dominates all the
others [see Figure 2.9(a)]. The adjustment procedure with the mirrors and the
LBO mount needs to be continued until periodical high peaks with one or two
small peaks in between are observed. In the case of ideal alignment, only the
clear periodical high peaks without any small peak between them can be seen.
The small peaks can be further minimized by careful adjustment of the input
beam with mirror M in Figure 2.7. Furthermore, the correct polarization of
the input beam can be chosen by rotating a half wave-plate (HWP in Figure

2.7) such that the output of the doubling cavity is maximized.

2.6.2 Hansch-Couillaud Method

Various perturbations can cause deviations of the doubling cavity from
resonance. To compensate for these deviations and to stabilize the resonance
cavity, Hansch and Couillaud introduced a polarization spectroscopy method
[45] that is commonly referred to as the Hansch-Couillaud method. Consider
an incident beam whose polarization axis is rotated with a HWP (see Figure
2.7) and forms an angle # with the transmission axis (o — pol. axis in Figure
2.4) of the doubling cavity. Thus, the incident beam can be decomposed into
two orthogonal linearly polarized components: £y = Ecosf and F| = E'sin¢
(E : amplitude of the incident beam) are the electric field components parallel
and perpendicular to the transmission axis.

The perpendicular component F, is simply reflected by the input coupler
M; and serves as a reference, while the parallel component E| sees a cavity

of low loss and experiences a frequency-dependent phase shift in reflection
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depending on the direction of the cavity length deviation from the resonance
position. For example, if the cavity length changes from resonance to a shorter
length, the component that made one round trip in the cavity will be ahead
in phase by an amount (—J) compared to the component that was directly
reflected from the input coupler. Similarly, a deviation to a longer cavity
length causes a delayed phase shift (4+0). Ideally, there is no reflection of
Ej when the cavity becomes resonant [see in Figure 2.9/ (b)] and the quarter
wave-plate (QWP in Figure 2.7) creates circularly polarized light just out of
the E/|-component. Otherwise, the QWP generates elliptically polarized light
with a relative phase difference ¢ between the two reflected components. After
passing through the QWP and a polarization beam splitter (PBS) cube, we

get [45]
TR, sind
(1 — Ry)* 4 4Rsin? (§/2)

I — I =21 cosfsind (2.18)

where [ is the intensity of the incident beam, [; (i = 1,2) is the intensity
measured by the PD, and the quantities T}, R,, are defined in Eq.(2.16). The
signal of Eq.(2.18) can be used as an error signal to stabilize the cavity. The
produced error signal in our set-up is shown in Figure 2.9(c). Only a small
fraction of the incident beam needs to be reflected as a reference to create
the error signal, and thus, a very small 6 ensures a higher intensity of the
circulating beam which gives a larger output of the cavity. After observing
the reflected beam shown in Figure 2.9(b), the error signal is generated by
rotating the QWP. The intensities at both photo diodes have to be balanced

with a polarizer to get the correct error signals.
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Figure 2.9: Experimental results for (a)Transmitted blue signal, (b)Reflected

red signal from My, (¢)Hénsch-Couillaud error signals

34



2.6.3 Electronic Stabilization

If the scan is turned off when the cavity is on resonance and the error
signal is zero, respectively, any perturbation will make the error signal deviate
from zero. To lock the cavity to the resonance position we use the feedback
electronics shown in Figure 2.8, The Hansch-Couillaud error signal can be
applied to the PZT1 through a combination of integrator (I) and proportional
gain control (P) by switching S2 and S3 ON/OFF. Usually, slow deviations
(temperature drift) are controlled with the integrator whereas fast deviations
(mechanical, electrical noise) are compensated for with proportional feedback.
The reset switch Sg is used for re-locking the cavity to resonance when the
PZT voltage of the error compensation approaches its limit value. In our
doubling cavity, we can maximize the output power by adjusting the LBO
crystal mount and the mirrors My, M3 very carefully and slowly while the

locking system is operating.
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Chapter 3

Experimental Apparatus and Procedures

3.1 Introduction

Rydberg states of helium (*He) atoms can be produced by successive exci-
tation from the 1S, ground state. The energy levels relevant to our experiment
are shown in Figure 3.1. With a lifetime of 8 x 103 s the first excited 23S;
state can be considered as the effective metastable ground state (He*) on the
time scale of atomic experiments. Its lifetime is mainly determined by the
decay rate to the ground state via magnetic dipole transitions because elec-
tric dipole transitions are prohibited by the selection rules [46, [47]. Here the
selection rules say that the electron spin cannot change and that the change
in total orbital angular momentum has to be AL = +1.

The direct optical transition from the ground state to the metastable state
is difficult due to a big internal energy of 19.8 eV, and thus He* atoms are

created by a DC electric discharge in our experiment.
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The transition from this effective ground state 23S; to a Rydberg state nL;
via the intermediate state 3P, is achieved by a two-step laser excitation at
A =389 nm and A = 780 — 796 nm, respectively. Once a beam of metastables
is produced, the created He* atoms should stay in the metastable state while
passing through the interaction and the detection regions. However, it was
experimentally observed that the loss of He* atoms caused from collisions with
the background gas is a severe problem when the pressure exceeds 10™° Torr
for more than a few cm along the beam path [48]. Thus, a vacuum system
that guarantees a sufficiently long mean free path is required [38]. This chapter
describes the production of our He* beam, and both our vacuum and detection

systems. Furthermore, the stabilization of the laser systems will be discussed.

3.2 Vacuum Systems

All experiments are performed in a beam apparatus consisting of three
distinct vacuum chambers: a source chamber to produce He* atoms, an inter-
action chamber to excite these metastables to Rydberg states with different
laser beams, and a detection chamber to measure the spatial distribution of
the helium atoms. The sketches of our vacuum system are shown in Figure
3.2l

The source chamber is a welded aluminum cube of 30 cm side length, while
the interaction chamber is a similar cube with 25 cm sides. A skimmer and a
slit separate these two chambers. To handle the gas flow from the source cham-

ber to the detection chamber, a moderate size differential pumping system was
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constructed using three diffusion pumps: an Edwards 9B3 booster pump with
a pumping speed of 850 1/sec even at elevated pressure, a NRC/Varian HS-10
ten-inch diffusion pump (4200 1/sec), and a CVC/Bendix PBA-100A six-inch
diffusion pump (1500 1/sec). Especially, the Booster pump is positioned in
the source line because it operates efficiently at high flow rates and in the
high-pressure range (~ 107 Torr). Two mechanical pumps back these three
diffusion pumps: a Welch Duo-seal 1398 (1500 1/min) and a Welch Duo-seal
1396 (2800 1/sec). The vacuum chamber can be isolated from the diffusion
pumps with gate valves: For the source and detection chambers CVC/VCSP-
61B six-inch gate valves (Gate-S and Gate-D in Figure 3.2) are used, and a
ten- inch gate valve (Gate-I, Model VRC 9457B-301) is used for the interac-
tion chamber. In addition, there is a gate valve to isolate the interaction and
the detection chambers.

In order to protect the vacuum chamber from oil contamination, the 6” and
the Booster pump are separated from the vacuum chamber by a water cooled
baffle which condenses the oil vapor so it can drop back into the diffusion
pump region. Cooling water is supplied to all the diffusion pumps and water
baffles. The pressure in the three different vacuum chambers is monitored
with ion gauges (Kurt J.Lesker G100K and G075K), and the foreline pressure
is also measured with Veeco thermocouple gauges. A fail safe system operates
and shuts off the diffusion pumps in one of the following cases: the foreline
pressure exceeds 50 mTorr, the speed of the cooling water flow falls below the
set point, or the temperature of the diffusion pump raises above the usual

operation point.
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The general procedure to achieve high vacuum in a system consisting of
mechanical roughing pumps and diffusion pumps is well described in many
vacuum books [49, 50, 51]. Usually, the diffusion pumps do not have to be
turned off when the vacuum chamber is brought to air if the gate valve is
closed. In Figure 3.2, for example, closing the gate valves Gate-B, Gate-
D, and roughing valve RD isolates the detection chamber so that only the
detection chamber can be vented to air while keeping all the diffusion pumps
on.

To evacuate the chamber, after the vent valve (not shown in Figure 13.2)
has been closed, the roughing valve RD is opened in order to first pump down
the chamber with the mechanical pump. Once the pressure drops below 100
mTorr the roughing valve RD is closed and the gate valve Gate-D is opened.
In experimental reality, any imperfection of the gate valve can cause undesired
airflow through a gap in the gate valve. Thus we turn off the diffusion pump
and have it cool down (~ 3 hours) whenever we open the vacuum chamber. In
addition, all the roughing valves (RS, RI, RD) are closed during operation.
Source and interaction chamber are always brought to air together because
they are connected through a skimmer.

The procedure to vent the chambers is the following: First, both chambers
are isolated from the detection chamber by closing the gate valve Gate-B,
and both the booster pump and the 10”-diffusion pump are turned off and
allowed to cool down for about 3 hours. Second, closing the valves FS, V1,
and V2 (FI: always open) ensures isolation from both mechanical pumps and

the detection vacuum loop. Third, the chambers are vented to air. In order
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to pump down again, after closing the vent valve, FS and V1 are opened
simultaneously but slowly in order to prevent a sudden change of pressure
which can cause serious damage to the glass tube in the source chamber.
When the foreline pressure reaches 100 mTorr, the diffusion pumps can be
turned on. After the pressure in the interaction chamber falls below 107°
Torr, the gate valve Gate-B can be opened so that the system is also pumped
down through the detection loop. The achieved pressures in our system are
107 Torr, 2 x 107% Torr, and 8 x 10~ Torr for the source, interaction, and

detection chambers, respectively.

3.2.1 Metastable Helium Source

The source chamber contains a Pyrex glass tube and a skimmer, as shown
in Figure 3.3 The design of our helium source is based on that of Fahey et
al. [52]. As shown in Figure 3.3, helium gas is guided from the He tank into a
Pyrex glass tube inside the source chamber through plastic tubing. The inlet
pressure of the helium flow into the glass tube is about 50 Torr. Both sides of
the glass tube are sealed (applying Aremco Inc. Ceramabond 503) with pieces
machined out of a rod (diameter 1”) of boron-nitride (BN), which combines
poor electrical conductivity with good thermal conductivity. There is a small
size nozzle (diameter 150 pm, length 1 mm) in the front side BN seal which
is cooled by liquid nitrogen in order to reduce the initial transverse velocity
spread of the helium atoms flowing through the nozzle by about a factor of
two as compared to the water-cooled case [53].

A thin glass tube (diameter 5 mm) is fed through the back side seal so that
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Figure 3.3: Metastable Helium source

a tungsten needle can be positioned along the axis of the glass tube such that
the tip of the needle is located close (~ 1 mm) to the nozzle. Approximately
1 ~ 2 cm downstream from the nozzle, there is a skimmer which is connected
to the wall separating the source chamber from the interaction chamber with
a bellows. The skimmer has a 1 mm hole and is mounted on a stage that is
adjustable in three dimensions.

The ignition procedure of the discharge is started by allowing helium gas
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into the glass tube by opening the valves V, and V;. Valve V5 should always
be opened ahead of valve Vi in order to protect the He tank from contami-
nation. By adjusting the micro-valve V,, the flow of helium is set to around
50 ~ 70 Torr on the pressure gauge. A pressure above 200 Torr can cause
serious damage to the glass tube. Thus, it is recommended to close both valve
V3 and V, before the pressure gauge shows a safe value below 200 Torr. Once
that is the case, the micro-valve V,, is adjusted further until the inlet pressure
reaches an adequate value. Now, valve V4 can be opened. The purpose of
the valve V3 is to get rid of the gas in the plastic tube region (He tank ~
glass tube) quickly through the source chamber rather than through the noz-
zle of the glass tube. Therefore, valve V3 should always be closed except when
pumping out the gas from the plastic tubing.

In practice, it takes about 10 min until the helium flow is stabilized in
the system. After helium gas is supplied into the glass tube through valve
V4, the pressure difference between the inside (~ 50 Torr) and the outside
(~ 1075 Torr) of the glass tube produces a supersonic expansion of the helium
gas through the boron-nitride nozzle. Now a voltage of (—3 kV) is applied
to the tungsten needle. The voltage difference between the needle and the
skimmer, which is at ground potential, creates an electric field. Usually, the
DC discharge starts. The discharge current can be varied up to (20 mA) on
the power supply. If a higher current is applied, the ballast resistor (100 k€2,
20 W, Model No. OHMITE B20J100K) that is used to ensure stable operation
can be burned. The higher the current, the faster is the velocity of the He

atoms in the beam [53]. The optimum current can be found by maximizing the
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source efficiency on the detectors (ion signal or phosphor screen), it is around
8 ~ 10 mA in our source.

Sometimes the discharge does not come out through the nozzle and stays
inside the glass tube. This usually happens if the pressure inside the glass
tube is too low. In order to solve this problem, the inlet pressure can be
slightly increased by adjusting the micro-valve V,, (up to ~ 100 Torr). Once
the discharge comes out, the inlet pressure has to be reduced (~ 50 Torr)
because the metastable He atoms get quenched in higher pressure.

If the discharge still does not run, several things should be checked: First,
if the back-up pressure of the booster pump decreases because there is no
gas flow from the source chamber through the nozzle one can suspect that
the nozzle is blocked. In this case, the inlet pressure would also be higher
than usual. Second, the ballast resistor could have been burned. As long as
the resistor works, one can see the discharge glow inside the glass tube if the
inlet pressure is decreased (< 50 Torr). In general, keeping the nozzle and
the needle clean will ensure better running of the discharge. In addition, the
position of the skimmer can be optimized by aligning the skimmer stage and
maximizing the brightness of the atomic beam on the phosphor screen. Under

steady running conditions, the source produced 10 metastables/sec/sr [54].

Longitudinal Velocity Distribution

A time of flight (TOF) measurement was done by Mary.J.Bellanca [54] us-
ing a chopper inside the vacuum system. A He-Ne laser beam hit a photodiode

located just behind the chopper wheel and thus generated a trigger signal for
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the TOF measurement. The detector was positioned about (2 m) downstream
from the nozzle of the glass tube. The current signal from the Keithley 486
Pico-ammeter was converted to a voltage signal with a 100 k) resistor, and
then subsequently amplified by a SR560 Low-Noise Pre-Amplifier. The signal
shown in Figure [3.4/ was taken with a Tek210 Digital Oscilloscope. The aver-
age longitudinal velocity and the spread Av were calculated from a Gaussian
fit (dotted line). The first peak is created by UV-photons. Its area is about
35% of the second peak, which is generated by metastable helium atoms. It
was observed that a higher inlet pressure increases the area of the first peak

and the amount of UV-photons, respectively.
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Figure 3.4: Time-of-flight velocity distribution. [54]
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3.2.2 Interaction Chamber

The interaction chamber contains two field plates, an ion detector, and
an electrostatic lens which is located (~ 4 cm) downstream from the plates
(Figure 3.5). In addition, a slit is placed (~ 5 c¢cm) up-stream from the field
plates (not shown in Figure 3.5, see Figure [3.2(b)). Its position along the
transverse direction can be altered from outside the vacuum chamber with a
flexible feed-through.

Both sides of the interaction chamber contain a window, each with a diam-

eter of 2 inches, so that our exciting laser beams can traverse the atomic beam
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orthogonally. The windows are anti-reflection coated for both 389 and 795
nm to minimize intensity losses. A number of BNC connectors are embedded
in the vacuum blank-offs of the interaction chamber for supplying voltages
to the electrostatic lens, the upper- and lower- field plates, and the MCPs
(micro-channel plates) of the ion detector. The anode of the ion detector is
also connected to a scope with a BNC cable. Details about our ion detector

will be discussed in the next section.

3.2.3 Detection Systems

In order to observe the ion signal produced by the Rydberg atoms and the
spatial distribution of the atomic beam we employ three different detection
systems: an ion detector, a phosphor screen detector, and a stainless steel
detector. All detectors are based on the combination of MCPs with an anode or
a phosphor screen. MCPs are thin discs of lead glass which contain many tube-
shaped channels that serve as multiplier tubes. The MCP we use (BURLE
Model MCP 25/12/12 D 40:1) has a maximum electron multiplication factor

of 4 x 10? for the maximum bias voltage (1000 V).

Ton Detector

Atoms that were excited to the Rydberg state can be ionized when colliding
with the background gas in the vacuum chamber. The produced ions will be
attracted towards the MCP because the front side of the MCP is at a potential
of —2000 V as shown in Figure[3.6(a). When the ions hit the MCP, an electron

shower is created. These electrons get accelerated to the second MCP by the
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potential difference, and the amplification process repeats. The MCP pair
in our system has a combined gain of ~ 10°. An anode collects the electrons
produced by the second MCP so that a current can be measured in the circuit.
Subsequently, the current signal passes through an amplification circuit and
is converted to a voltage signal. The voltage signal which is proportional to
the number of produced ions can be observed with an oscilloscope (Tektronix,
Model TDK210) if the atomic transition to the Rydberg state is on resonance
during the scan of the electric field. The signal shown in Figure 3.6(b) was
observed for the transition to the 26S Stark level at an electric field of 30 V/cm

while scanning the lower field plate.

Phosphor Screen Detector (PSD)

The PSD provides us with a real time image of the spatial distribution of
He* atoms because the intensity of the fluorescence of the screen is related to
the flux of the atoms. A CCD camera (Dage-MTI CCD100) is used to monitor
the phosphor screen through a flanged window (Figure 3.7). The PSD thus
enables us to optimize our alignment: We can observe the beam height and
direction, we can maximize the atomic beam flux by adjusting the skimmer,
and we can set the 389 nm laser frequency because the radiative pushing effect
can only be observed if the frequency scans the correct transition. However,
the sensitivity of the PSD to the atomic flux is non-linear and non-uniform
(measured in Ref.[21]) because the areas that are exposed to a higher flux age
faster. We can even observe completely burned spots in the more frequently

exposed area of the surface of the phosphor screen (Model P20).
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Stainless Steel Detector (SSD)

To obtain an absolute measurement of the atomic beam profile, a stainless
steel detector is a better choice. A top view of our SSD detector and a typical
signal created by our He* beam are shown in Figure 3.8. After passing trough
the slit (~ 300 pum), the He* atoms strike the stainless steel plate where elec-
trons can be liberated with an efficiency of 70% of [56], because the energy of
the metastable atoms (~ 20 eV') is larger than the work function of the metal
(4.7 ~ 5.6 eV) [55]. By contrast, the kinetic energy (0.05 eV at 1600 m/s) of
the ground state atoms is too low to overcome the work function of the metal.
Once the electrons are liberated they are accelerated towards the MCP by the
potential difference between the stainless steel plate and the MCP. A Keithley
Model 486 picoammeter measures the electron current at the anode. The slit
position can be altered with a linear motion vacuum feedthrough (Huntington
Mechanical Laboratories, Inc. 2 inch feedthrough, Model L-2111-2), so that a
position dependent current signal can be measured. Thus, an accurate trans-
verse beam profile can be recorded because the current is proportional to the

flux of the He* atoms. Figure 3.8(b) shows such a profile.

o2



(a) He* 1] | : GND
RS [ I
s U = —JI
H AL e
.:—Aﬁl il
' 2 d_ b -1067v
: 1 9.9k T 2M
: e
: He* 1 B
= WE:
: e = = o
: 1a
: D K FT
: A B
P o IR
. stainless N K
: steel a4 I L -1900V
. 240K
d L. -2000v
u =
'/ // /] MCP —l_ HV
Anode -2000V
[ Electrode
C—1 Insulator FT : 2 inch feed-through
(b)
T
£
=
c
(=]
3
(=]
(/2]
(7]
0 T T T T T T T T T I........'I
0.4 0.6 0.8 1.0 1.2 1.4 1.6

Position of SSD [inch]

Figure 3.8: (a) Stainless Steel + MCP Detector(SSD), (b) Current signal

measured by a Keithley Model 486 pico-ammeter

93



3.3 The Laser Systems

Figure 3.1 shows the relevant transitions for the production of Rydberg
atoms. Two independent Ti:Sapphire laser systems provide the light for the
pump (A = 389 nm) and the Stokes (A785 — 815 nm) beam. The 389 nm
light is generated by frequency doubling the output of a Schwartz Electro-
Optics (SEO) Ti:Sapphire laser, which is pumped by a diode-pumped, fre-
quency doubled Nd:YVOy laser (Coherent Model Verdi V10) with up to 10.5
W output power at 532 nm. The red light is provided from a TekhnoScan
Ti:Sapphire laser (Model TIS-SF-07e) which is pumped by an Argon-Ilon laser
(Coherent Model Innova 300). To stabilize the laser frequencies, three differ-
ent kinds of locking system are used: the Pound-Drever-Hall technique [57],
the Hénsch-Couillaud technique [45], and Saturation Absorption Spectroscopy
(SAS) [58, [73].

3.3.1 Blue (A =389 nm) Laser System

The schematics of the blue laser system are presented in Figure 3.9/ and
Figure [3.10. A ring configuration is chosen in order to avoid the spatial hole
burning effect. In a standing wave geometry, spatial hole burning results in
power losses because the molecules in the active region do not contribute to
the build-up of the laser field if they are positioned in the nodes of the standing
wave. In order to enforce uni-directional operation, an optical diode was placed
(OD in Figure 3.9) in the ring cavity. In addition, stable single-frequency

operation is obtained by using several mode selective elements, namely a bire-
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fringent filter and an etalon. In our laser system, one can tune the etalon (E)
to change the wavelength in a relatively small range (107 ~ 107° nm). At a
wavelength of 778 nm, a change of 1073 nm corresponds to roughly 500 MHz
in frequency. If a larger amount of adjustment is required the birefringent
filter can be tuned. When all elements are properly aligned the output power
of our laser reaches up to 3.1 W in single mode operation at 777.8 nm.

The locking system to stabilize the laser frequency consists of three main
parts. In this section, the stabilization electronics for Pound-Drever-Hall
(PDH) and Saturation Absorption Spectroscopy (SAS) are explained. Hénsch-

Couillaud method is presented in Section 2.6.1 and 2.6.2.

Pound-Drever-Hall Locking

The SEO Ti:Sapphire laser is first stabilized employing the Pound-Drever-
Hall locking scheme [57]. Therefore, a part of the main laser beam is split
off with a beam splitter and further divided into three beams. One goes to a
wavemeter that allows to coarsely monitor the frequency of the laser, one is
sent to a reference Fabry-Perot cavity to monitor the mode structure of the
laser, and the third is used to generate the Pound-Drever-Hall error signal
as follows: An electro-optical modulator (EOM) modulates the phase of the
central carrier frequency w. of the laser with the frequency 2 (= 64 MHz) and
produces two sidebands at w.+. The radio frequency (= 64 MHz) is supplied
to the EOM from the oscillator (RF) via an RF-amplifier (RA) [Figure 3.10].

The modulated beam is then incident on the Fabry-Perot (FP) cavity.

Two photodetectors detectors (fast Si PIN photodetector, PD1 and PD2)
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are used to measure both the transmission through the FP cavity and the
reflection from the cavity. The reflected signal from PD1 passes through an
RF amplifier (Mini-Circuits ZFL500LN) and is compared to the RF input at
64 MHz in a mixer (Mini-circuits ZEM2B) which serves as a phase detector.
When the carrier frequency is resonant to one of the FP cavity modes, there is
no reflection at the carrier frequency and the phase-modulated sidebands have
equally reflected amplitudes but opposite phases. Thus, the two sidebands
interfere destructively and the signal on PD1 will be zero.

When the carrier frequency is slightly detuned from cavity resonance, the
amplitude of the reflected beam depends on where the resonance is. The two
sidebands experience a different amount of reflection so that the beating signal
on PD1 will be non-zero even if their phases are still opposite. The PD1
signal is measured with a phase sensitive lock-in detection system consisting
of amplifier, mixer, reference signal, phase shifter, and integrator or low pass
filter. Lock-in detection is used to measure both magnitude and phase of
the signal by extracting only the part that is at the same frequency as the
reference frequency out of the noise. The output of the mixer that multiplies
the sinusoidal PD1 signal with the sinusoidal reference signal of frequency (2,
is a signal that contains two frequencies: the sum and the difference of the two
multiplied frequencies of the signals. There can be a phase difference between
the PD1 signal and the reference signal because of the response characteristics
of the EOM and the cavity.

The phase shifter compensates for this phase difference. If the two incom-

ing frequencies are exactly the same, the mixer produces both a DC (zero-
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frequency) and an AC (2Q2-frequency) output. An integrator or low-pass filter
will only let the DC-component pass which is then used as an error signal for
the feedback loop. Both error and transmission signal are shown in Figure
3.11. The error signal is fed to a low-noise amplifier, and the gain and cut-off
frequency are optimized. After choosing the correct polarity (+/—) and DC-
offset, the error signal is separately sent through a two stage ( fsqp = 2 Hz

and 0.5 Hz ) integral and a proportional loop and afterwards recombined in
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a summing junction. The output of the summing junction is amplified with
a high voltage amplifier and applied to PZT1 [in Figures 3.9 and [3.10] in
order to adjust the laser cavity length back to resonance with the small mirror

attached to PZT1.

Saturation Absorption Spectroscopy (SAS)

While the laser frequency can be stabilized on a short time scale when
locked to a Fabry-Perot cavity, a small and comparably slow temperature drift
can change the cavity length without any compensation. Therefore the FP
cavity should also be locked to a stable reference in order to achieve long-term
stability. Since we want to drive the transition 23S; — 33P, at A\ = 389 nm
with the beam produced by second harmonic generation (see Chapter 2) the
best reference is this transition itself. Employing the saturation absorption
spectroscopy (SAS) technique, we thus lock the PDH cavity to the atomic
transition. Therefore, a polarization beam splitter cube (PBS) is used to take
a small part of the output of the frequency-doubling cavity for the SAS setup.

The beam is split into two weak beams (probe and reference) and a strong
counterpropagating pump beam that overlaps with the probe beam in the He-
cell. The strong pump beam saturates the transition 23S; — 33Py at A\ = 389
nm so that the pump beam is weakly absorbed resulting in a sharp dip (called
Lamb dip) in the Doppler absorption profile. In our SAS setup, the saturation
parameter of the pump beam is s ~ 10 (s = I/I,, I, = 3.31 mW /cm?, [2]),
while that for the probe beam is s ~ 1. The balance of the intensities of the

probe and the reference beams at the photodiode detector (PD4) is adjusted
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Figure 3.12: Saturated absorption spectroscopy (SAS) signals for 23S; — 33P,
transition at A = 389 nm. (a) without locking the laser to the PDH error signal,

(b) with locking the laser to the PDH error signal
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with a variable filter (F) as represented in Figure 3.9, The half-waveplate
(HWP4 in Figure 3.9) can be used to adjust the intensities of the pump and
the probe beams. An optical isolator was positioned right after the SAS setup
to avoid feedback to the SAS setup.

In order to produce the error signal, the absorption signal from PD4 is
fed to a lock-in amplifier (SRS Model SR510) and modulated by a 1 kHz
reference signal. This reference signal also modulates the PDH cavity through
the summing box Y5 when the switch S4 is closed. The mechanism to generate
the DC error signal with the lock-in detection has already been explained in
the section on the generation of the PDH error signal. The absorption and the
error signal are shown in Figure 3.13(b). The error signal was taken at a slow
scan rate (< 1Hz). After aligning the SAS setup we need to find the correct

transition peaks.

Locking the blue laser to the correct transition

The first step to move the laser frequency to the correct transition is to tune
the birefringent filter (BF') and the etalon (E) [see Figure3.9]. If the frequency
is tuned to the correct value, the fluorescence in the RF-discharged He-cell can
be observed. In our system, we used to observe the fluorescence at the values
(777.9505 - 777.9515 nm) with the wavemeter (WA-1500). In order to find
the absorption peak, the laser cavity is scanned with the function generator
(20 Hz) by closing the switch S3 and adjusting the DC-offset (Figure [3.10).
Once the absorption signal appears as shown in Figure 3.12(a), the cavity has

to be tuned towards the higher wavelength side until one cannot see another
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absorption signal when further increasing the wavelength. This is the case
because the frequency of the correct transition (23S; — 33P;) is the lowest
frequency among all transitions (23S; — 33P; , J = 0,1,2) as shown in Figure
3.1. This procedure should be done without locking the laser to the PDH
cavity, but with the frequency-doubling cavity locked. If the doubling cavity
unlocks while the laser cavity is scanned, it can be relocked with the reset
switch of the integrator.

The next step of the whole locking procedure is to lock the laser cavity
to the PDH cavity as follows: First, the switch S3 is opened after observing
the peak shown in Figure 3.12(a). The laser cavity will stay close to the
correct transition peak. Second, the scan of the PDH cavity is turned off by
switching off the internal function generator in the summing box ¥ (Figure
3.10). Third, the switches S1 and S2 are closed and the gain of the two-
stage integrator is adjusted simultaneously until the transmission signal from
PD2 jumps up to the former height of the transmission peaks on the scope
screen. Subsequently, the locking must be optimized in order to minimize
the laser line-width by minimizing the deviation of the locking signal from
the resonance position (zero). This is done by optimizing the integral and
proportional gains.

After the laser cavity has been locked to the PDH cavity, the next step is
to lock the PDH cavity to the atomic transition, namely the SAS. The laser
frequency should already be very close to the correct transition. Switch S6
(Figure 13.10) is set to scan and switch S5 is closed, then the DC-offset of

the summing box Y5 is changed until the absorption signal shown in Figure
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3.12(b) can be observed again. If the gain G5 is increased the crossover peak
23S, — 33Py and 33Py, which is 330 MHz apart from the transition ( 23S; —

33Py ), can be observed as shown in Figure 3.13(a).

3.3.2 Red (A =780 — 796 nm) Laser System

The red laser system is also based on a Ti:Sapphire laser (Tekhnoscan
Model TIS-SF-07e), but is pumped by an Argon-lon laser (Coherent Innova
310). The output of this laser is around 1W at a pump power of 10 W. The
relatively low power compared to the blue laser system that is pumped with the
same amount of power might be caused by several factors: First, the pumping
efficiency might be lower because the spectral and the mode quality of the
argon-ion laser are not as good as those of the Verdi V10. Second, the ring
geometry is different, as the red laser system contains more mirrors and mode-
selective elements which can reduce the output power. Third, the quality of
Ti:Sapphire crystal is also not as good as that in the blue laser system.

The Tekhnoscan laser system includes an electronic control unit which
enables us to control the frequency selecting elements without opening the
cavity. Furthermore, part of the output beam is sent to the photodiode PD1
to track intensity variations (Figure 13.14). The error signal is produced from
the PD1 signal and is fed to PZT1, PZT2, and PZT3 to keep the cavity
at the length that yields the same intensity. Thus, the laser cavity is locked
to the intensity peak measured by PD1. In addition, PZT4 was added to

the small mirror to gain fast control of the laser cavity. The same feedback
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method as in the blue laser system is used to produce a PDH error signal, and
the laser cavity can be locked to the PDH cavity by applying the error signal
to PZT4. Therefore, either intensity or frequency locking can be used in this

laser system.
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Chapter 4

Rydberg Atoms

4.1 Introduction

Rydberg atoms are atoms with a single valence electron in highly excited
electronic states, named after Swedish physicist Johannes R. Rydberg (1854 -
1919). Their unique properties, e.g. their orbital radius which scales with the
square of the principal quantum number n and thus may extend over more than
thousands of Bohr radii, make it possible to investigate many atomic properties
that cannot be observed with ground state atoms [60), 61]. Furthermore, they
can serve as very sensitive field probes that enable us to resolve extremely small
perturbations experimentally. Extensive reviews of many aspects of Rydberg
atoms are given in Ref. [61].

The goal of this chapter is to describe the advantage of using Rydberg
atoms in our experiment. With this in mind the general properties of Rydberg
atoms will be briefly reviewed. The effect of external electric fields on Rydberg

atoms will be described since the calculation of the Stark shifted energy levels
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is important in this experiment

4.2 General Properties of Rydberg Atoms

The role of Rydberg atoms in atomic spectroscopy is described by White
[62]. The wavelength for the Balmer series of atomic hydrogen (n > 2) is given

by the formula [61]:

(4.1)

where b = 3645.6 A. This formula gives the wavelengths of the transitions
from states with high n to the state with principal quantum number n = 2.
The significance of the frequency of a transition was realized by Hartley [63],
and Eq.(4.1) can be expressed in terms of the wavenumber v, the inverse of

the wavelength in vacuum [61],

- ()G

In 1890, Rydberg classified the different series of alkali atoms into sharp(s),
principal(p), and diffuse(d) series [64]. The wavenumber of the different series

can be expressed as [60), 61].

R,

m for 1= S, P, d (43)
— Ul

Vi = Vool —

where the constants v, and 0; are the series limit and the quantum defect,
respectively. The constant I, is called Rydberg constant because it was Ryd-
berg who first realized that this constant is a universal constant for all different

kinds of atoms. In addition, Rydberg observed that the wavenumbers of lines
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connecting the s and p series, for example, are given by [61, [64]

1
(m=06)"  (n—4,)°

+v=R, (4.4)

where the (+) sign and n represent a sharp series, while the (-) sign and m
describe a principal series.

The physical significance of highly excited states became clear when Bohr
proposed his model of the hydrogen atom in 1913 [62]. According to the Bohr
theory, an electron of charge —e and mass m. in a circular orbit of radius
r around a positive charge Ze follows Newton’s law. Combining this with
the quantization of angular momentum, m.vr = nh ( h : Planck’s constant

divided by 27 ), yields [61]
n’h’

"= Ze*m.k

(4.5)

with k = 1/4rme, , €, being the permittivity of free space. For the Hydrogen
atom the lowest orbit (n = 1) has been assigned a special name, Bohr radius,
and a symbol ag. The energy F, of a state n is obtained by adding its kinetic

and potential energies [61],

k2 Z2%e*m, mec?a’Z?
Ey=——rgm = (4.6)
2n2h 2n

where « is the fine structure constant. Since the binding energy is negative,
the electron is bound to the proton. The allowed transition frequencies are the
differences in the energies given in the above Eq.(4.6) divided by Planck’s con-
stant. Comparing this result to the Rydberg formula which is the generalized
form of Eq.(4.4) , Bohr showed that the Rydberg constant could be expressed

as
k2e*m mec?a?
= S — 4.
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To include the effect of nuclear motion, the electron mass m,. needs to be

replaced by me(14+m./M) ( M : nuclear mass ) because the Rydberg constant

R, depends on the mass of the nucleus for a given atom. The expression given

in Eq.(4.7) is valid for a nucleus of infinite mass.

Property

Formula

n-dependence

Binding energy

Energy difference

Orbital radius (r)

Geometric cross section

Dipole moment

Polarizability

Radiative lifetime

Fine structure

(

E,=—R,/(n— &)
E,— By
~3[B(n—6)? =1 +1)]
m (r)*
(n,1|er|n,1+1)

9¢2 5 [{nim|z|n/U'm/)|?

o Enim—E 111

3hcdmeg —~n<n’ 2141

&2 1=l'+1 @w3 |<n/l/ |T| nl>|2>_1

Table 4.1: General properties of Rydberg Atoms [60, 61]

As given by the equations (4.5) and (4.6) the energy decreases as 1/n? and

the orbital radius increases as n?. In order to realize the importance of these
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effects, consider an atom in a relatively low Rydberg state n = 10 and compare
it to a ground state atom. An hydrogen atom in the ground state is bound by
R, and has an orbital radius ag. In contrast, the binding energy of the Rydberg
atom energy is given by 0.01R, and the orbital radius corresponds to 100 Bohr
radii (100ag). As a consequence, the valence electron in a Rydberg atom is
in a loosely bound orbit. Thus, an opportunity to study the properties of an
atom in a relatively strong field is provided because Rydberg atoms can be
easily ionized even by small electric fields. The other unique aspect of Rydberg
states comes from their relatively large orbit. The electric dipole moment is
proportional to the size of orbital radius, so that Rydberg atoms have both
a very large dipole moment and a huge polarizability. Due to this bizarre
property, Rydberg atoms are very sensitive to external electric fields. Table
4.1 shows several selected properties of Rydberg atoms and their dependence

on the principal quantum number n.

4.3 Schrodinger Equation for Hydrogen Atoms

For developing Rydberg atom wave functions, it is a good starting point to
review general features of the hydrogen atom. The Schrodinger equation for
the electron of a hydrogen atom, written in atomic units [see Appendix [A.1],
is [60), 65]

<— — ) U (r) = EVY(r) (4.8)
From now on, atomic units are used unless otherwise mentioned. In atomic

units e = =m =1 ( m : electron mass), « = 1/137 and ac =1 ( « : fine
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structure constant), and also Z = k = 1 , where k = 1/4meg. In a spherical

coordinate system V2 can be expressed as

vQ

2 2
C® 20 1 a( a) 19 (49

=+~ (sl | + ———
or?2  ror  r?sinf 00 r2 sin’ § 0>
If we separate the wave function ¥ (r) into a radial and an angular part,

f (Ena l7 T)

r

W (x) = Yin (0, 9) (4.10)

then the solutions of the angular part are the spherical harmonics Y, (6, ¢)

defined in terms of the associated Legendre polynomials P™ (cos )

(l—m)204+1
(l+m)! 4rm

Yim (6, 0) = \J P™ (cos ) e™? (4.11)

where [ is a non-negative integer and m takes integral values between —[ and

[. The radial equation, which gives the energy values, can be written by

<1d2 1 1(141)

Sy o )f(EnJﬂ’):Ef(En,l,r) (4.12)

The solutions can be expressed in terms of associated Laguerre polynomials

Ly 165, 66],
(n—101—=1)! ,o\t+3/2 | 2
E, l.r)=rR, _ <> — L 412041 <>
(4.13)
and the corresponding energy eigenvalues are given by
R
E, = —n—;/ (4.14)

This result shows that the energy of a hydrogenic energy eigenstate depends

only on n, such that states with equal n but different [ are degenerate. The
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Rydberg constant R, given in Eq.(4.7) becomes simply 1/2 in atomic units.

In our experiment helium atoms are used. In non-hydrogenic atoms, the ex-
cited valence electron in a Rydberg state does not only interact with the nu-
cleus, but it is also affected by the core electrons. Considering this effect the
Coulomb potential can be modified to the form — + V,(r) , where V,(r) de-
scribes the deviation from —% and can include the atomic fine structure as well
as core-polarization effects. For large r, the deviation term V.(r) approaches
to zero. For many practical purposes, therefore, it is not necessary to know
the exact form of V.(r), because the wave function of the valence electron
far away from the core can be approximated from the well-known hydrogenic
wave function except for the phase shift that arises in the core. Considering
the effect of the deviation V,.(r), we need to introduce the concept of quantum

defect [67].

4.4 Quantum Defect

As described above, the main difference between non-hydrogenic atoms and
hydrogen atoms is the influence of the core electrons on the valence electron.
When the electron is far from the ionic core, as it is in the case of a high
angular momentum [-state, it sees a net charge due to the screening of the
core charge by the core electrons and behaves like a hydrogen atom.

However, if the electron penetrates the core, the core electrons no longer
shield the nucleus to the same degree. Especially the energies of the low [-states

of non-hydrogenic atoms will be depressed with respect to their hydrogenic
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| — value a b C d

0 0.296609 -0.038840 0.004960 0.000000

1 0.068320 0.017870 -0.017190 0.000000
2 0.002869 0.006220  0.000000 0.000000
3 0.000240 -0.002090 0.000000 0.000000

Table 4.2: Rydberg-Ritz coefficients for the calculation of the quantum defect
of triplet Rydberg helium atoms, but neglecting spin-orbit splitting. The data

is obtained from [76].

counterparts by this reduction of shielding caused by core penetration. Taking

this into acount, Eq.(4.14) can be corrected [67]

R,

Ey=-—1
(TL — 51)2

(4.15)

The quantity ¢§; is called quantum defect and depends on the angular mo-
mentum [. In general, §; is a function of n which can be described by the

Rydberg-Ritz formula [68]:
S =a+bE, +cE*+dE> + . (4.16)

where a, b, c,d, - - - are the Rydberg-Ritz coefficients for the calculation of the
quantum defect [ see Table 4.2/ ]. For non-penetrating orbits, core polarization

causes similar but much smaller energy shifts.
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4.5 The Stark Effect on the Hydrogen Atom

The Stark effect in Rydberg atoms has been an interesting subject since
the research on the Stark structure of Rydberg states of alkali metals by Zim-
merman et al.[69]. Because the valence electron in Rydberg atoms sees the
ionic core like a positive net charge, it can be a useful starting point to con-
sider the Stark structure of the hydrogen atom. The Hamiltonian describing
the interaction of the atom with an uniform electric field F directed along the
z-axis is [69)]

Hp=—-p-F=Fz (4.17)

where p is the electric-dipole operator. If we neglect electron and nuclear
spin, the Schrodinger equation for the hydrogen atom in a static electric field
is given by [69]
1_, Z
<—2v 2 Fz> U (r) = BV (r) (4.18)
r

Eq.(4.18) is separable in parabolic coordinates &, 7, ¢ which are defined by the

relations [66]

£ = r+z
no=r—-z
¢ = arctan (y/x) (4.19)

Using Eq.(4.19), the operator V? can be expressed as

o A df.dY 4 df d) 1 d
VS e <§d5> e ndn ("dn) T and? (4.20)
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We assume that the solution of the Schrodinger equation (4.18) can be written

in the form,
v (57 n, @) - (Pl (5) CI)Q (77) 6:|:imgo ) Zl + ZQ - Z<m Z O) (421)

where Z; and Z, are separation constants which may be thought as the positive
charges binding the electron in the £ and 7 coordinates.
Substituting Eqgs.(4.20) and (4.21) into Eq.(4.18)), we extract two separate

equations for @4 (£) and @5 (1)

d dq)l 1 m2 1

— e—= “EE+ 7y — — ——FE)1d, = 0

d dq)g 1 m2 1

— | n—= —En+Zy— — +-Fn?|®, = 0 4.22
dn<ndn>+<2 n+ Zs 4n+4 77) > , (4.22)

These ordinary differential equations (4.22)) can be directly integrated or they
may be treated by means of a perturbation procedure. In the low electric field
region, the perturbation theory starting from the zero field solutions will give a
satisfactory result . In the case of F' = 0 in Eq.(4.22), the normalized solution

has the form of [66]

ny! “legplm L(m m
o= o Ent e L (6).
n2! —Lep LI I(m m
P = (n2+m)!3/2€ 2paez ML (en) (4.23)

withe =/ —=2E. L' (x) (x = &£ or en ) is the Laguerre polynomial [65, 66],

n;+m
and n; = Zin — (m+1)/2 (i=1,2). The relation between the quantum

numbers n, |m|, and the parabolic quantum numbers ny, ns is given by

n=mny+ny+|ml+1 (4.24)

7



Here, ny, ny represent the numbers of nodes in the wave functions given in
Eq.(4.23). The perturbation procedure takes the separation parameters Z; as
the eigenvalues instead of the energy E. The eigenvalue Z;, in the case of
F =0, can be expressed in terms of the electric quantum number n; and the

magnetic quantum number m [66].

|
7O = (n n m;) e (4.25)

If I # 0, the first order perturbation term Zi(l) can be obtained by the integral

of the perturbation potential evaluated over the unperturbed eigenfunctions

given in Eq.(4.23).
(1) | 2 2
7 =+ Fe (617 + 6nam + m* + 6ny + 3m + 2) (4.26)

The signs +, — are for ¢ = 1,2 respectively. Eqs (4.25) and (4.20), together
with the relation Z = Z; + Z5, leads to the first order perturbed term for the
energy:

1 17?2 3Fn

_ 2 __
E__ig ——Eﬁ—F??(nl—ng) (427)

In the next order of perturbation theory, a quadratic term in the electric
field appears in addition to the linear Stark effect in Eq.(4.27). This can be
calculated by second order perturbation theory and the resulting energy is

given by [65, [66].

E = EO© + EM + E®)

_ Z72 +§ <n> ( )
T T Tt \gz)\mTm
I o (n 4 2 2 2
o F (z) 1702 = 3(ny —no)® — Om? +19]  (4.28)
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Silverstone [70] calculated to higher order, but the first and second order shifts
are adequate for many applications. For example, E. Luc-Koenig et al. [71]
showed that the energy levels of the hydrogen atom exhibit linear Stark shifts
from zero field to the point at which field ionization occurs. On the other
hand, Peter M. Koch observed that even the second order energy levels are

not valid for a certain precise measurement [72].

4.6 Stark Effect in Helium Atoms

For helium atoms, the hydrogenic case only can apply for high [ values,
and the Stark shifts produced by relatively weak fields are proportional to the
square of the electric field intensity [66]. The quantum mechanical calculations
for Rydberg atoms in electric fields was described by Zimmerman et al., in 1979

[69]. For an atom in an external field, the total Hamiltonian is given by [69]
H=Hy+ Fz+ Hy, (4.29)

where Hj is the Hamiltonian of the unperturbed system, and Hy, the energy
shift of the states due to fine-structure. It is experimentally important for
the heavier atoms, but the fine structure in the Rydberg levels of He is small
and can be neglected for high n states [73]. The diagonal elements of this
Hamiltonian matrix are the zero-field energies, which can be calculated with
the formula (4.15) using known quantum defect values [74]. It means that
unperturbed energies are diagonal in a spherical basis, not a parabolic ba-
sis. Therefore, it is essential not only to transform the representation from

spherical, to parabolic, basis, but also to generalize the parabolic states to
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non-integral order [75]. Since there is no advantage in employing a parabolic
representation for He as was used in the alkali atoms [69], the Stark problem
for He was treated in a spherical basis. The electric field contribution to the
Stark effect is represented in the off-diagonal elements in the basis provided

by the eigenvector |nlm) of the zero-field Hamiltonian [69].
(nlm |Fz|n'l'm")y = &6 (m,m")§ (1,1 £ 1) F (Im |cos 0| I'm/) (nl |r|nl') (4.30)

where, the unit of Eq.(4.30)) is explicitly eap( = 1 in atomic unit, ag : Bohr
radius) and ¢ (m, m’) = 0 unless m = m’. The angular part solution is analyt-

ically given by a spherical harmonics [69]

, 12— m2
(I, mlcos@|l —1,m'y = QD@1
, ({+1)2—m?
l |l +1 = 4.31
(m[cosb]L+1,m) (20 +3)(20+1) (4.31)

The main task of computation is to evaluate the radial matrix elements (nl |r|n'l’).
In the method described in Ref. [69], numerical integration of the radial equa-
tion at the quantum-defect shifted energy gave the most satisfactory results.
After all matrix elements are evaluated, the resulting matrix is diagonalized.
The resulting energy levels plotted as a function of field strength is called a
Stark map. For *He at n=26, such a map, shown in Figure 4.1, displays the
shifts of the s, p states due to their quantum defects. For the manifold (region
Al > 3), the external field lifts the degeneracy of the zero-field energy levels.
In addition, anti-crossings are clearly observable in the areas such as B. Since a
non-hydrogenic He core breaks the Coulomb symmetry and couples the Stark

levels, anti-crossing effects dependent on the coupling strengths arise [77].
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Figure 4.1: Electric field dependence of the excitation spectra for n=26 (Stark

map) [76]

We did spectroscopy experiments to observe these energy levels. In our
experiments, the 389 nm laser was locked to the transition from the state 23S,
to the state 3°P, and the wavelength of the red laser was moved between 796.41
nm and 796.81 nm [see Figure [3.1]. In order to observe the transition signals,
the red laser was also locked after being tuned to the desired wavelength. Then
the lower-field plate was scanned with function generator (amplitude Vpp : 10
V , frequency : 100 Hz) and the applied voltage to the upper field-plate was
slowly moved [the geometry of the field plates is presented in Figure 3.5(b)].

The ion-signals are observed when the frequency of the red laser is on

resonance with a transition to one of the Stark energy levels. Because of the

81



e J 796.57

§
s 796.63 —

A Wowr

S
@)
S
796.70 I3
=

Py Y TR P p—e—Y

P =
- s 796.78

) M dordod
‘ Ak e 796.81
0 100 200 300 400

Electric Field (V/cm)

Figure 4.2: Experimentally obtained Stark map for n=26

82



mode-hops of the red laser at some wavelengths, it was impossible to observe
the resonance peaks for all the regular spacings of wavelength as shown in
Figure4.2. The strongly deppressed s-state is clearly observed. The manifolds
and their anti-crossings are represented by A and B, respectively, with dot-

circle.

4.7 Oscillator Strengths and Lifetimes

The relative intensities of the Stark manifold spectral peaks are determined
by the probability that an atom will undergo a transition from the state nim
to n'l'm’ [66]. To calculate the strength of a certain transition it is convenient

to introduce the oscillator strength defined as [66, 78]
fn’l’m/,nlm = 2%wn/l’,nl |<n/l/m, |Z| nlm>|2 (432)

where wy, iy 1 = (B — Epy)/h. This equation shows that the oscillator strength
corresponding to a transition nlm — n’l'm’ depends on the orientation of the
z-axis, that is, on the direction of polarization. For the sum of the oscillator
strengths for all transitions from a definite state n of the atom, the Thomas-
Reiche-Kuhn rule applies [65, 66, [7§]

> fovmtim = Z (4.33)

n'l'm!

where Z is the total number of electrons in the system. This is a very general
rule which holds for any atom or molecule, with or without external fields, for
any polarization direction. In free space, the radiative decay rate of an atom

cannot depend upon the magnetic quantum number m. Therefore, it is useful
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Figure 4.3: He triplet Stark intensities

to define an average oscillator strength of the transition nl — n’l’, which is
independent of polarization and m, as [61 [66]

2m Im

Fotr ot = = =222 11 ||l | 4.34
Jorvr Shwzwﬂ+1Kn|ﬂnH (4.34)

where [, is the larger of [ and I'. 2l + 1 is the degree of degeneracy of the

initial state. If we reverse the roles of [ and [’, it is straightforward to show

that

- 21+ 1
n//n :_777/”// 4-35
S 2l_|_1fl,l (4.35)

The average oscillator strength (4.34) also follows a sum rule [61, 66]

> o 1@20-1)
~ n'l—1,nl — 3 2l7—|-1
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] 1+ 1)+ 3)
%;fn’l-‘rl,nl = 3o (4.36)

With this result, it is possible to calculate the sum of the oscillator strengths
of all the transitions from a certain level nl to the levels of a fixed orbital
quantum number. From (4.36)) it is apparent that
Y fovr =1 (4.37)
'l
where I’ = [+ 1. Eq.(4.36) shows that among the transitions nl — n’l — 1 the
ones which lead to lower energies predominate, whereas the strongest nl —
n/l + 1 transitions are to higher energies.

For the application to the atom optics we are interested in the Stark state
with the highest transition probability. This can be estimated through the
distribution of oscillator strengths among a manifold of Rydberg Stark states.
The numerical calculation for the intensity of excitation of n = 26 Stark states
from 3%P, state is shown in Figure 4.3.

Comparing the theoretical calculation with the experimental result [see
Figure [4.4] leads to a different behavior. The strongest transition occurs at
near zero field and decreases with increasing the electric fields, which is oppo-
site to the calculation. We propose that the difference comes from the slope
of 265 levels. Since the energies behave quadratically with field, the range of
field values lying within the resonance width decreases as the field increases.
Therefore the fraction of atoms that are resonant decreases with field. This
does not lead to line broadening with field because changing the electric field

value does not bring relatively more atoms into resonance at higher electric

fields.
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The Einstein A coefficient, which defines the spontaneous decay rate of the

nl state to the lower lying n/l’ state, also can be expressed in terms of the
(4.38)

2 2
2e wn’l’,nl —
fn’l’,nl

average oscillator strength [61] [66]
me3

An’l’,nl = -

In general, the radiative lifetime, 7,,;, of the nl state is defined by the inverse
(4.39)

of the total spontaneous decay rate [61].

1
Tnl = [Z An’l’,nl]

n'l’

We can also define the branching ratio b, ,; for the decay from the state nl
(4.40)

to a particular state n'l’ as
b o An’l’,nl o A
n/l' nl — A = TnlAnl' nl
2/:/ n/l’ nl
n’l
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Chapter 5

Coherent Manipulation of Atoms

5.1 Introduction

Coherent excitation of atoms to well-defined quantum states has been a
crucial issue in atomic and molecular experiments [80]. In our experiment,
we want to achieve a highly efficient population transfer from the metastable
state 23S; of helium to Rydberg states. Then the atomic beam can be focused
because of the large interaction of the Rydberg helium atoms in an inhomoge-
neous electrostatic field. Incoherent excitation does not transfer a significant
fraction of atoms to the excited state. The possibility of coherent population
transfer with high efficiency by suitably delayed pulses was first predicted in
1984 by Oreg et al. [81] and the technique to achieve a complete popula-
tion transfer to the excited states, such as the Stimulated Raman Adiabatic
Passage (STIRAP) method, was introduced by Bergmann and coworkers [82].
This chapter describes different techniques that can be used to transfer pop-

ulation. Starting with two-state systems, we consider the efficiency of each
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method of population transfer. Then the three-state STIRAP technique is

described.

5.2 Population Transfer in a Two Level Sys-
tem

For the case of a two-state atomic system in incoherent radiation, the rate
of change in an atomic population was first predicted by Einstein [83]. The
changes induced by radiation are caused by absorption, stimulated emission,
and spontaneous emission. If sufficiently intense radiation near the atomic
resonance frequency is applied to a ground atomic state so that stimulated
emission dominates spontaneous emission, then the excited state population
at time ¢ is

1 t
Palt) = 5 {1 — exp {—B /0 u(t’)dt’]} (5.1)
where B is the Einstein B (absorption) coefficient and u(t) is the spectral
energy density. This equation shows that the excited state population reaches,
at most, the saturation value of 50 %, which is the best transfer efficiency in
the incoherent radiation regime [incoh.exc. line in Figure [5.1].

However, when unexcited atoms are exposed to a coherent radiation field,
Eq.(5.1) is no longer valid and one has to obtain the probability P,(t) =
|C,,()]? of finding the system in state |n) at time ¢ by calculating the proba-

bility amplitude C,,(t) starting from the time-dependent Schrédinger equation

d

—Cult) = =1 ; Hypn () Co (1) (5.2)
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Figure 5.1: Evolution of the population of the upper state in a two state system

[30).

where the Hamiltonian matrix elements H,,,, represent the interaction between
the atom and radiation field.

As shown in Figure 5.2 consider the case of idealization of the radiation
as a monochromatic field E(r,t) = Eqcos(k - r — wt) with frequency w and
amplitude |Eg|. The relevant quantity to determine the rate of population
transfer produced by coherent excitation between ground state |g) and excited

state |e) is the strength of the interaction, namely the Rabi frequency [2, 84]:

e |E

0=
h

{elrlg) (5-3)
In Eq.(5.2), an atom-field interaction Hamiltonian is given by [85]
wg 0 0 Q2 coswt

H=Hy+H =h +h (5.4)

0 we Q cos wt 0
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Figure 5.2: Atom-Field Interaction. wy is the Bohr frequency corresponding
to the frequency difference w, and w, , which are the frequencies of the ground

and excited states, respectively.

where w, and w, are the atomic energy frequencies corresponding to the two
relevant states |g) and |e), respectively. If we solve (5.2) with this Hamilto-
nian under the rotating wave approximation, the excitation probability can be

deduced [85]

Pot) = ; ( Q“ff) (1 = cos (Qust)] (5.5)

where the effective Rabi frequency is defined by
Qeff =V QQ + AZ (56)

and A denotes the frequency detuning from resonance (A = w—wyp). As we can
see from (5.5)), the oscillations in population become more rapid with increasing
|A| and in general, the population will never be transferred completely to the
excited state unless A = 0. However, for the resonance case, that is A = 0,
the population oscillates between 0 and 1 with Rabi frequency €2 as shown in
Figure 5.1/ (coh.exc line). Thus, for cos(Q2t) = —1, the population is completely

inverted. In a real experiment, one usually deals with an inhomogeneously
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broadened system such as a thermal gas. Since the atoms have a certain
velocity distribution they see the frequency of the applied field by the Doppler
effect. This causes a detuning effect so that the maximum population of the
ensemble in the excited state is always less than 1. In addition, the atoms
may experience different intensities across the field so that they cannot fulfill
the complete transfer simultaneously due to the different values of €2t. These
experimental limitations require an averaging over the theoretical excitation
probabilities, resulting in a less efficient population transfer than in the case
of interaction between single stationary atoms and fields of constant intensity.

Another robust method for achieving efficient population transfer is adia-
batic rapid passage (ARP). In this technique, the frequency of the external field
is slowly tuned across the atomic resonance from below resonance (A < Q) to
above resonance (A > Q) or in reverse. The time scale of this frequency sweep
must be slower than the Rabi frequency (7' > Q~!), but faster than sponta-
neous emission (7' < I'™1) | here T is the decay rate of the upper state. For a
quantitative analysis of this process, we can turn to the adiabatic theorem of
quantum mechanics. In the rotating frame the time dependent Hamiltonian

in (5.4) can be expressed as [2, 80]

Hepp =

h
5 (5.7)

Q —2A

The basis for this Hamiltonian is given by |g,n + 1), where the atom is in the
ground state and the field contains n + 1 photons, and |e,n) , where the atom

is in the excited state and the field contains n photons.
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(A)
The eigenvalues of (5.7) are:

Ey =

N | S

(A £V +A?)
and the corresponding eigenvectors are:

In+) = sin®©|g,n+ 1) +cosO e, n)

In—) = cos®|g,n+ 1) —sinO |e,n)

where the mixing angle © is defined as

1, /Q
O =3 tan <A>

(5.8)

(5.9)

(5.10)

Therefore the energy separation of these eigenstates is just the effective

Rabi frequency Q.7¢(5.6). Figure [5.3/ shows the energies of the eigenstates

as a function of the detuning given in Eq.(5.8). When © = 0 (A < 0), the

eigenstate |[n—) becomes |g,n + 1) . If we increase the interaction strength
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and cross the resonance (A = 0), then the state [n—) evolves into a mixture of
lg,n + 1) and |e,n). After passing through the resonance €2 starts to decrease
and A moves to a positive detuning, so that © goes to /2, that is, |[n—) ends

up in the state |e,n). This process requires the adiabatic condition [87, 88]:

21 AD) > d@(t)‘ (5.11)

dt
Finally the excited state can be populated up to an efficiency of 100 % through
adiabatic following on the lower branch in Figure 5.3/ [89]. The eigenstates of

the Hamiltonian given in (5.7) are known as the dressed states, since the laser

field dresses the bare atomic states.

(a) (b) Qe

Figure 5.4: Bloch sphere description of adiabatic rapid passage

Another description for adiabatic passage is based on the Bloch vector
model. Consider atoms in the ground state (south pole of the Bloch sphere)
and a laser detuned to the far red, that is, |A] > Q. The Bloch vector
R, initially parallel to the effective Rabi frequency vector €.s, will precess

around .y at frequency A. Now suppose we sweep the detuning A, changing
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the direction of €. sr, through resonance slowly compared to |Q.ss|. The Bloch
vector R will then adiabatically follow 2.¢; and end up parallel to €.ss in the
excited state (north pole of the Bloch sphere) [Figure 5.4]. Additionally, this
process must be completed in a time shorter than the radiative lifetime of the

excited state, and that’s why this process known as adiabatic rapid passage.

5.3 Theory of the Three-state STIRAP

In the STIRAP procedure, three states, labeled |1), |2), and |3), are linked
by two successive interactions, |1) —|2) and |2) —|3) by pump and Stokes fields
[Figure [5.5]. When two coherent fields are pulsed and ordered in counterin-
tuitive sequence, in which the Stokes field precedes the pump field, complete

population transfer from the initial state |1) to the final state |3) can be pro-

duced.

The simple analysis of STIRAP begins with the time-dependent Schrodinger
equation (5.2) for a three-level atom. Under the rotating-wave approximation
(RWA), the Hamiltonian of the interaction between the non-degenerate three

states and two coherent radiation fields is [85]:

0 Qpt) 0

Qp(t) 2Ap Qs(t) (5.12)

0 Qs(t) 2(Ap— Ag)
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Figure 5.5: Three-level excitation scheme. The initially populated state |1)
and the final state |3) are coupled by the pump laser P and the Stokes laser S

via an intermediate state |2) [80].

Here Qp(t) and Qg(t) are the Rabi frequencies of the pump and Stokes fields
determining the coupling strength between the related states, while the de-
tunings are defined by hAp = (Ey — Ey) — hwp , hAg = (Ey — E3) — hws (wp
and wg are the frequencies of pump and Stokes fields, respectively as shown
in Figure [5.5.)

In the case of STIRAP, the two-photon resonance condition between states
|1) and |3) should be fulfilled, that is, Ap = Ag = A. Solving the eigenvalue
equation for (5.12)) yields the three energies of the dressed states which are the

eigenstates of the atom-field interaction system, namely [85];

GHE) = A A2+ Q3(1) + Q3(1)

Oty =0

W) = A=A QB(t) + Q4(t) (5.13)

The corresponding eigenstates |a™), |a®), and |a~) are represented by the linear
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combination of the bare states |1), |2), and |3) [85]:

sin @ sin ¢ |1) + cos ¢ |2) 4 cosOsin p |3)

Q
+
~_
I

[e=]

a> = cosf|1) —sinf |3)

a ) = sinfcosp|l) —sinwl|2) + cosfcos |3 5.14
ja”) p|1) —sing |2) @

where the time-dependent mixing angles 6(t) and ¢(t) are defined by the re-

lationship

tanf(t) = Qp(t)/€s(t)

tan2p(t) = /Q5(t) +Q%(t)/A (5.15)

One of the dressed states in (5.14) has no component of the state |2), and
is thus only a coherent superposition of the initial state |1) and the final state
|3). For atoms in the state |2) there are several decay channels due to spon-
taneous emission, and these are the main reason for population loss. Efficient
population transfer is possible if these losses can be minimized or avoided. In
that respect the state |a"), known as a trapped state, turns out to be an appro-
priate vehicle for the most efficient population transfer. Note that the state
vector |U), which describes the time evolution of a system, can be expanded
in terms of the bare {|1),]2),]3)} or dressed {|a™), |a®), |a")} states. Aslong
as the state vector |¥) is bound to the trapped state |a"), the intermediate
state |2) is not involved in the process of population transfer and will never
be populated throughout the whole interaction time. Therefore, we need to

know how to tie the state vector |¥) to the state |a").
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Figure 5.6: Time dependence of the pump and Stokes Rabi frequencies (g p,

the mixing angle O, and the populations in three-state STIRAP [80]

In Figure 5.6, the atoms are exposed to the Stokes field first and see the

pump field later:

05t = 0) 0 (region I)
Qs(t — OO) .
(= o) — 0 (region III) (5.16)

In this case, the mixing angle 6(t) defined by (5.15)) rises from 6(t — 0) =0 to
O(t — oo) = m/2. From Eq. (5.14) we see, that the state |a°) evolves from the
initial state |1) (¢ — 0) to a superposition of states |1) and |3) in the region
IT and finally to the state |3) as t — oco. Consequently, the population can be

completely transferred from the initial state |1) to the final state |3) by means
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of an adiabatic link of those states.

Figure 5.7: Vector picture of STIRAP. |1), |2), and |3) are atomic bare states.
|a®), |a™), and |a™) are the dressed states. |V¥) is the state vector and ©

represents the mixing angle [80, 90]

A vector picture of this STIRAP process is also shown in Figure At
the very early times, atomic beam only sees a very weak Stokes field first.
The atomic system is not perturbed by the field, so we can think the state
vector |U) is lined up to the atomic bare state |1) and the dressed state |a®),
that is, [(a®|¥)| = 1. At this point the bare states |2) and |3) are coupled
by the Stokes field so that these two states start to be split while state |1)
stays without any interaction. When the Stokes field reaches its maximum in-

tensity, the energy splitting between states |2) and |3) will also be maximum.

98



Even the atomic beam start to see a weak pump field in this time, the atoms
does not make the transition because the energy level of the other states are
shifted too far-off resonance to make the transition with a weak pump field.
Therefore, the state vector |¥) still stays along the states |1) and |a") but
there is just a small amount of deviation due to the weak pump beam. After
passing through the maximum intensity of the Stokes field, the atomic beam
sees an increasing pump- and a decreasing Stokes- intensity. In other words,
the mixing angle © increases. The state vector |V) departs from the state |1)
and moves toward state |—3) followed the evolution of state |a’) adiabatically.
As long as the coupling is based on sufficient Rabi frequencies, the motion of
the state vector |¥) keeps close to the state |a’) and this results in complete
population transfer from the initial state |1) to the final state |3). By contrast,
insufficient coupling causes the state vector |¥) to deviate from the state |a®)

and populates the leaky state |2).

5.4 Conditions for Adiabatic Following

For efficient population transfer, the adiabatic condition needs to be ful-
filled as mentioned above. In the basis of the dressed states, the Schrodinger

equation for the state vector |U) is expressed in the following form [90]:
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ct (t) Qppcoty 2ifsing 20 ct(t)

ih@ At) | T 5| —2ifsing 0 —2i0 cos ¢ A(t)

¢ (t) —2ip  2ifcosp —Qepytang ¢ (t)
(5.17)

Here |¥) = ¢t |a™)+° |a®)+c |a™) and Qepp = /Q% + Q% . The condition

for adiabatic following requires that the system should remain in |a") after the
passage if it is initially prepared in | (0)) = |a"), that is, ¢® (0) = 1. Thus the
coupling between state |a®) and either the states |a™) or |a~) should remain
negligible during the passage. If the off-diagonal elements of the Hamiltonian
in Eq.(5.17) are zero, then there is no coupling between the coefficients ¢°
and c¢*. Especially, we can set the experimental condition to the one-photon
resonance, A = 0. Then, we have ¢ = 7/4 by the Eq.(5.15). Now the coupling
term 2i0 sin ¢ is negligible, provided that 6 is much smaller than the field-
induced energy splitting Q. sy, that is, § < Q7. Using Eq.(5.15), we deduce

the condition for adiabatic following explicitly in terms of Rabi frequencies:

OpQs — QsOp
03+ Q%

’9’ = | <K Qeff (518)

As long as this condition is satisfied during the passage, non-adiabatic coupling
of the state |a”) to the states |a®) is small, and efficient population transfer is
possible. Consider the atomic beam passing through the spatially overlapped
area of two Gaussian shaped Stokes and pump fields during the time period T,

and take a time average of 0 during this time period T". We have <6’> =m/2T.

100



Combining this result with Eq.(5.18) leads
QepT > 1 (5.19)

It has been suggested that Q.¢;T" > 10 is appropriate for efficient population

transfer based on the results of several experiments and simulations [90].

5.5 STIRAP Results

Consider the decay rate I'; which describes the decay from level ¢ primarily
due to spontaneous emission. In the presence of decay, one has to account for
irreversible population loss by including complex energies in the Hamiltonian
in Eq.(5.12) which then becomes under the two-photon resonance (Ap = Ag)

condition

0 Qpt) 0

0
Ht) =5 | Qp(t) 28 —iTy Qs(t) (5.20)

0 Qg(t) —il'3

It is necessary to know the Rabi frequencies for the corresponding transi-
tions to obtain numerical values for the probability of the excitation of a He*
atom into a Rydberg state. The Rabi frequency is related to the peak intensity
of the applied light field by 2 = %\/% (u : transition dipole moment) as well

described in Chapter 1, and the conversion relations for the He* transitions

23S, — 33P, — 263S; are presented in Table 5.1.
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Transitions 238, — 33P, 33P, — 2635,

m=0 Qp(0) = 1.78 x 102y/Tp MHz | Q5(0) = 0.117 x 102\/Tg MHz

m=41 | Qp(1) =154 x 102y/Tp MHz | Qg(1) = 0.1 x 102\/Tg MHz

Table 5.1: Conversions from intensities to Rabi frequencies ( Ip and Ig are

expressed in W/cm?)

The time evolution of the numerically calculated population is illustrated
in Figure 5.8 for the Rabi frequencies Qp(0) = 35 MHz and Q¢(0) = 40 MHz.
The atomic velocity was chosen to be 1500 m/s, the beam waist for both
laser beams was assumed to be Imm, and the delay time between the two
beams was 1.4 ps. The Qp(t) and Qg(t) time dependence are represented
by Gaussian pulses : Qp(t) = Qp(0)exp[—(¢/107° — 6)?] /2 and Qg(t) =
Qs(0) exp [~ (/1076 — 4.6)%] /2. The decrease in the number of atoms after
reaching the maximum probability 1 is the effect of the decay rate I'.

The effect of the intermediate-level detuning A on the efficiency of the STI-
RAP was also numerically calculated and is shown in Figure [5.9. The transfer
efficiency decreases as the detuning increases because of the deteriorating adi-
abaticity, as can be seen from Egs.(5.15) and (5.17)

Using the configuration shown in Figure (3.5, the magnitude of the STIRAP
signal was monitored with our ion detector while the field plates were scanned
through the Stark energy levels (Figure [5.10). The pump (blue) and Stokes

(red) laser beams were focused onto the atomic beam with cylindrical lenses
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Figure 5.8: Time evolution of the numerically calculated population in a Ry-
dberg state. The curves labelled 2p and €25 represent the time dependence of

the pump field and the Stokes field, respectively.
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103



overlap

A

Scan

Figure 5.10: Ion signal from the Rydberg states against the Red (Stokes)
beam position. Negative (positive) position corresponds to the Red (Blue)

beam coming ahead and the overlap position is zero.

(f = 400 mm for red and f = 800 mm for blue) to a Gaussian waist of 400 ym
and 600 pm, respectively. The long axes aligned perpendicular to the atomic
beam axis were 1.5 mm (red) and 2.0 mm (blue). The focal position of the red
beam with respect to that of the blue beam was varied along the atomic beam
axis. We use a co-propagating beam configuration using a dichroic mirror
which is high-reflection coated for the red beam and anti-reflection coated for
the blue beam. The Rabi frequencies 2p and (2g were matched approximately
at the value of 35 ~ 40 MHz. In experimental reality the maximum population
transfer was achieved when the separation of the two beams was ~ 0.4 mm.

This corresponds to an interaction time of ~ 0.25 us for an atomic velocity
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of 1500 m/s, and we get Q.;s7 = 13 £ 2. Thus, the adiabatic condition given
in Eq.(5.19) was fulfilled. From Figure [5.10/ it is obvious that the efficiency
in the STIRAP configuration is much higher than in the overlapping beam

configuration.

5.6 Autler-Townes(AT) Effect

Since Autler and Townes first observed the splitting of an absorption line in
OCS (carbonyl sulphide) into a doublet when applying an rf-field in 1955 [91],
the AT effect has been extensively studied in atoms and molecules [92 93].
In this experiment, a strong 389 nm pump laser induces an AT splitting, and
we can measure the separation of the doublet, which corresponds to the Rabi

frequency of the pump laser, by employing the red laser as a probe.

5.6.1 Theory of the Autler-Townes Effect

Systems in a strong optical field are best described in the dressed atom
picture [94]. The total Hamiltonian consists of three parts: the atomic part,
which gives the atomic energy levels, the radiation part whose eigenvalues
are E, = (n+1/2) hw; ( w; : radiation field frequency), and the atom-field
interaction part [2].

Consider the energy level diagram of the atomic and the radiation part
as shown in Figure 5.11. If we express the states associated with these two
parts as |atom , photon), then the states A, B, and C, for example, can be

represented by |1, n — 1), |2, n — 1), and |1, n), respectively. State A in the
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Figure 5.11: Atom-Field system energy diagram. Ref. [2]

(n-1)-photon column is raised to state C in the n-photon column by one pho-
ton of energy hw;. In Figure 5.12(a), the 389 nm laser field couples two atomic
states |1) and |2) with a detuning A. Therefore, a closely spaced pair of one
excited state |2,n — 1) and one ground state |1,n) separated by hA is formed,
as shown in Figure [5.12(b). The atom-field interaction part couples the states
|2,n — 1) and |1,n) through the off-diagonal matrix elements of the Hamilto-
nian, and splits the energy levels farther apart to (Qef ;= \/M)
Consider the three-level ladder system shown in Figure 5.12(a). The states
|1) - |2) are coupled by a strong 389 nm pump field, and a weak field couples

the states |2) - |3) . Then the dressed states are given by
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Figure 5.12: Autler-Townes effect in dressed picture

|®1) = cosf|l,n) —sinf|2,n — 1)
|®2) = sinf|l,n) +cosf|2,n—1)
[®5) = [3,n—1) (5.21)

The mixing angle 6 is defined by tan 20 = Qp/A the same way as in Eq. (5.10)
and the eigenvalues of these dressed states depend on the Rabi frequency of

the |1) - |2) transition, Qp, and on the detuning A:

h

a = <A+\/Q%J+A2>
h

& = -5 <A—\/Q§D+A2)

g3 = 06 (5.22)

where 0 is the detuning of the probe field. Egs.(5.21) and (5.22) shows that a
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probe field induced transition between the state |®3) and the dressed state |®;)
occur when the probe detuning ¢ is chosen to satisfy the resonance condition
d =¢; for j =1,2. Note that because e5 > 1, resonance with |®s) occurs for
shorter § than resonance with |®;), i.e., the |®2) resonance peak appears at

the red-side of probe detuning.

3, n-1) |ws) [3, n-1) | g 3, n-1) |3
|o2)
|02 l1,n) T |02y
[10) T A e B Vamn
l2,n1) *  ° l2,n1) ] A o Qe
|01 |d1) [1,n) 1
|0
A=0 A<O A>0

(a) (b) (c)

Figure 5.13: Detuning dependence of the Autler-Townes splitting. (a) reso-

nance (b) red-detuning (c) blue-detuning.

For a zero detuning of pump field ( see Figure 5.13(a) ), the separation
between two peaks, €5 — €1, is the Rabi frequency 2p. Thus the minimum
separation of the doublet peaks corresponds to the Rabi frequency of the pump
field. For large negative A ( ~ 7/2) the resonance with state |®;), which is
here predominantly level |2, n — 1) as shown in Figure/5.13(b), occurs for § ~ 0,
while resonance with state |®s) (predominantly level |1,n) ) occurs for § ~ A.
When A is large and positive (f ~ 0) as shown in Figure5.13(c), the resonance

at 0 ~ 0 is associated with state |®,).
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5.6.2 Observed Autler-Townes Effect

The experiments were performed in the same setup with the STIRAP ex-
periment. The Hex atomic beam axis crosses the axes of two co-propagating
laser beams at right angles. The axes of the two laser beams coincide, but
the sizes of two laser beams are different: the waists were 1 mm, 0.4 mm, and
the heights 2 mm, 1.5 mm, for blue and red, respectively. The power of the
pump field was 40 mW (Qp ~ 35 MHz) and the probe field power was 50 mW
(Qs ~ 3 MHz). To detune the pump field we tilt the direction of pump beam
instead of tuning the laser frequency itself [see Appendix (C].

The excitation signals were obtained by monitoring the ion signal while
both laser frequencies were locked to the corresponding transitions while the
field plates were scanned through the Stark energy levels. Figure 5.14 shows
the experimental results.

As discussed in the previous section, each of two peaks appearing in the ion
signals can be attributed to a transition induced by the probe field between
the 23S; Rydberg state and one of two dressed states |®;) or |®,). Since
the dressed states are constructed as superposition of state 23S; and 3P,
with relative composition that depends on the strength of the pump field as
parameterized by a mixing angle 6, the intensities of the doublet peaks depends
on the detuning of the pump field.

When the power of the probe field were increased up to 300 mW, whose
Rabi frequency is comparable to that of the pump field, the coupling effect
to the Rydberg states needs to be considered and this effect causes more

complicated dressed states. As shown in Figure 5.15, the third satellite peak,
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Figure 5.14: Experimental measurement of Autler-Townes splitting
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Figure 5.15: Strong Probe beam effect
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which is other than |®;) and |®5), appears for A = 0. When the pump field
was detuned the dressed energy levels were shifted and it seems that |®o) was

shifted to the side of the state at satellite peak.
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Chapter 6

Focusing the Helium Atomic Beam

6.1 General Background

Atomic beams can be manipulated in inhomogeneous electric fields due to
the interaction of the electric field gradient with the induced electric dipole
moment of the atoms [95]. The dipole force acting on an atom in an inhomo-

geneous electric field E can be expressed as [96]
Q 2
F=(p-V)E= EV‘E’ (6.1)

where p and « are the dipole moment and the polarizability of the atom,
respectively. From F = —VU, the Stark potential energy of a ground-state
atom is given by

U=-2EP (6.2)

2

This shows that the force on ground state atoms exposed to an electric field
gradient is always directed towards the stronger field, and it is thus impossible
to focus an atomic beam with a thin electrostatic lens with a rotational sym-

metry around the atomic beam axis [97]. To focus ground state atoms in both
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transverse directions, therefore, at least two lenses in an alternating gradient
configuration are required [95]. Consider the atomic beam propagating in the
z-direction. The focusing (defocusing) in the first lens is in the same direction
as the defocusing (focusing) in the second lens. Thus the focusing in both
transverse directions (x- and y- directions) is achieved, but there is imperfect
ratio of focusing in two directions because of unequal magnification through
two lenses. In order to compensate unequal magnification the third lens is
required [98]. Using an electrostatic lens with three focusing elements in an
alternating gradient configuration, the imaging of a neutral atomic beam has
been demonstrated [95, O8]. Due to the small polarizability « (on the order
of 1073 Fm?), at least a few kV of electric potential had to be applied to an
electrostatic lens in these experiments.

In our experiment, we take advantage of the relatively large polarizability
of Rydberg atoms, which scales with the principal quantum number as ~ n’

(Table 4.1). Thus, moderate electric field gradients are sufficient to focus a

beam of Rydberg atoms in the same configuration as used in Ref. [95, 9§].

6.2 Electrostatic Hexapole Lens

In order to focus Rydberg helium atoms, we designed an electrostatic
hexapole lens, which consists of six electrodes instead of using three pairs
of electrodes along the beam axis as shown in Figure 6.1. This configuration
produces a field gradient that increases linearly with the distance from the

center of the hexapole.
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Figure 6.1: Electrostatic hexapole lens. The atomic beam propagates in the

z-direction.

In cylindrical coordinates, the electrostatic potential can be expressed as

the following multipole expansion [99)]:

U(r,8) = —Eoro li tn (r)” cos(nd) + 3 (r)nsin(ne)] (6.3)

= n \rg = n \ry
where Ej is the central field, ry is a scaling length, and a,, (b,) are the expansion
coefficients. r = /22 + y? is the radial distance from the symmetric center,
and 0 = tan™! (%) The n = 1 terms in Eq.(6.3) represent a constant electric
field, while the n = 2 and n = 3 terms are the quadrupole and hexapole fields.
To achieve the symmetric magnitude of the field under reflection on the x-
and y- axes, we can set b, = 0. For hexapole fields (n = 3), Eq.(6.3) can be
simplified to

r

U(r,0) =—-U, ( >3cos 30 (6.4)

To

where Uy = Fyro%. Assuming that the induced dipole moment p is parallel
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to the electric field and independent of the field strength leads to the force

acting on a dipole p in the hexapole field from Eq.(6.4)

po Pl (6.5)

7o

Thus, the magnitude of the radial force is proportional to the distance from

the beam axis. That is, the trajectory of the atoms is governed by an equation

for harmonic motion with the spring constant k = 6’;#. Figure 6.2 shows the
0

plot of equipotential lines for the hexapole electric field.

Figure 6.2: Equipotential lines for the hexapole electric field

Consider an atom with mass m and velocity v passing through the electro-
static lens during a time interval At (= s/v) as shown in Figure 6.3. Momen-
tum conservation yields

FAt = musina (6.6)
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Figure 6.3: (a) Cross section of the hexapole lens (b) Atomic trajectory passing

through the hexapole lens
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Using Eqgs.(6.5) and (6.6), the focal-plane position [ can be expressed as

mv27’3
| = 0

~ 6spUp’

(6.7)

where 7y and s are the internal radius and length of the hexapole lens, respec-
tively. Up is the hexapole rod voltage. Eq.(6.7) shows that the focal position
does not only depend on atomic properties (m,v,p) but also on the lens pa-
rameters (s, 79, Up).

Considering Figure 6.3(a) and Eq.(6.1) gives

6pU,
COS p X p307 (6.8)
To

where ¢ is the angle between the electric dipole moment p and the electric
field E. Thus, the direction of p when passing the hexapole lens determines if

the beam is diverging or conversing.

6.3 Experimental Results

To ensure an effective interaction between Rydberg atoms and the field
created by the electrostatic lens, the distance between the interaction region
and the lens had to be chosen carefully. Considering the lifetime (7 ~ 40 us)
and the longitudinal velocity (v; ~ 1500 m/s) of the He* atomic beam in the
n=26 Rydberg state, for example, it is obvious that the distance must be less
than 6 cm. Once the Rydberg signal has been observed with the ion detector,
the electric potentials, U, and U_ in Figure [6.3(a), are adjusted to find the
values which give the brightest image on the phosphor screen detector. An

image taken during the experiment and intensity profiles of the image along
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two transverse directions (x and y axes) are illustrated in Figure 6.4, The
image in Figure 6.4(a) shows the atomic beam profile when the red beam was
turned off. Figure [6.4(b) is the image when the Rydberg atoms were created
by the two- photon transition, where the applied potentials were U, = 211 V
and U_ = 0 V. The intensity profiles of the focused He* beam are plotted
in the horizontal (x-axis) and vertical (y-axis) directions as shown in Figure
6.4(c) and (d). The values in FWHM (Full Width at Half Maximum) along
the x- and y-axes are about 0.6 mm and 3 mm, respectively.

We assume that the asymmetric shape of the focused spot is caused by the
profile of thermal atomic beam passing through the field plates (dimensions in
Figure3.5). Even if the image of the atomic beam in Figure 6.4(a) has a longer
side along the y-axis due to the rectangular shape of slit ( 0.5 mm X 2 mm
longer side in the y-axis), most of the atoms which are vertically spread by
no more than the height of the field plates (~ 5.7 mm) and might thus be
cut in the outlet of the field plates. But the spread in the x-axis is opened
due to the open-side of the field plates. Thus, the shape of the atomic beam
passing through the electrostatic lens can be almost rectangular whith a height
of ~ 5.7 mm and a width much larger than its height. The overall spot size
may also depend on the velocity distribution which causes the chromatic aber-
rations as explained the above. Therefore, a laser cooled atomic beam can
guarantee a brighter (a colder temperature) spot through minimizing chro-
matic aberrations and the spread of the atomic beam. Figure 6.4(e) explains
why the focused spot is not located in the center of the atomic beam. A surface

plot of the focused beam is presented in Figure [6.5.
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Figure 6.4: Experimental results on the focusing of He* atomic beam: (a) Red
laser-off (b) Red laser-on (c) plot of the focused beam along the y- direction
(d) plot of the focused beam and the atomic beam along the x-direction (e)

atomic beam geometry
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Figure 6.5: Profile of focused atomic beam
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Chapter 7

Conclusion

Precise control of atomic beams on the near-atomic scale is a crucial matter
in atom optics research. The goal of this experiment was to produce and focus
a high flux He™ atomic beam. In order to do so, we used the STIRAP excitation
technique to efficiently create Rydberg atoms and take advantage of the strong
dipole interaction between electric fields and the Rydberg atoms.

Due to their different oscillator strengths, the Rydberg states give different
transition strengths, and thus we investigated the transition strengths for the
n = 26 Stark energy levels. Ultimately, the STIRAP excitation to the 263S;
Rydberg state was the best choice to achieve an efficient population transfer.

The Autler-Townes effect has been observed resulting in a measurement
of the Rabi frequencies of the lasers. Since STIRAP critically depends on
the Rabi frequencies. this measurement helped to optimize the choice of the
the Rabi frequencies and the beam sizes of the two laser beams for efficient
STIRAP excitation.

We have built an electrostatic hexapole lens to focus the Rydberg He atomic
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beam, and we observed a focused bright spot on our phosphor screen detector.
This result promises future control of the beam position since various combi-
nations of different voltages can be applied to each of the hexapole electrodes
to move the focal point of the lens.

As a future plan, the He* atomic beam can be used to do neutral atom
lithography in a direct deposition mode, where He* atoms with a high internal
energy are focused by the electrostatic lens to an extremely fine spot and
deposited onto a substrate, or in a lithography mode, where the focused He*
atoms are used to expose a suitable resist material. With all these potential
applications, it is apparent that Rydberg atom optics using a He* atomic beam
can provide some new tools for manipulation of matter on the near-atomic

scale.
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Appendix A

Atomic Units

Quantity Definition in atomic units Value
Charge (e) Charge of the electron 1.60218 x 1071 C'
Mass (m) Mass of the electron 9.108 x 10728 ¢

Length (agp) Radius of Bohr orbit (h*/me?) 5.2917 x 1072 cm

Velocity (vg)  Electron velocity in Bohr orbit 2.1877 x 10% em/s

(e?/h = ac)
Energy (e?/ag) Twice the ionization energy of H 27.2112 eV

Frequency vo/ag = me* /h* = 47 R, 4.1341 x 10716 sec™?

Table A.1: Taken from Ref.[66]. ( H : hydrogen )
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Appendix B

Spectroscopy Data for 2°S; —3°P, Transition

Quantity Value
Excited state lifetime (7) 106.83 ns
Transition Linewidth (I'/2m) 1.49 MHz

Saturation Intensity (I, = whe/3M37)  3.31 mW /cm?
Capture velocity (v. = I'/k) 0.58 m/s
Recoil velocity (v, = hk/M) 25.6 cm/s

Doppler limit (vp = \/kgTp/M) 27.25 cm/s

Table B.1: Doppler Temperature Tp = Al'/2kp, mass M = 6.646 x 10727 kg,
k=2m/X (A= 388.98 nm), all data taken from Ref.[2].
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Appendix C

Calibration for Optical Molasses

A configuration of counterpropagating laser beams which is known as op-
tical molasses [2] has been used for laser cooling of atoms. The total radiation
pressure force on an atom in the low intensity regime (I /[, < 1, I : saturation

intensity ) is given by [2]

(C.1)

r I/, r I/,
2

F(v) = hk— ik
2 1+ [Q(A—Fk~V)]2 1+ [2(A—}k~V)]2

where A is the detuning of the laser frequency from the atomic resonance, and
the Doppler shift (k-v) depends on the propagating direction of the laser light
(k) and the direction of atomic motion (v).

The plot in Figure|C.1(a) shows that F'(RkL) is nearly linear with velocity
for |v| < I'/2k, so it is convenient to define a capture velocity as shown in
Table B.1. For example, the capture velocity is calculated as v. = 41"/2k for
A = 4I" and this corresponds to 9.2v, for the 389 nm transition. This can be

easily calculated by the relation:

a = L = . £ — -9 6 .
Pl A+ (52) = (389 x 107 m)(1.49 x 10° /s) = 0.58m/s  (C.2)
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Figure C.1: Plot of total radiation pressure force wvs. velocity for (a) red

detuning and (b)three different blue detunings
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This value corresponds to 2.3 v, because the recoil of one 389 nm photon
leads to a change of 25.6 cm/s in atomic velocity [see Table B.1]. We can also

estimate the Doppler shift created by one photon recoil as

25.6 cm/s
0.0389 x 10—3 cm

= (27) - 658 kHz  (C.3)

Awp =27 - vp = kv, = (27)

If our atomic beam with a longitudinal velocity v; of ~ 1500 m/s passes
through the 389 nm laser beam orthogonally and is deflected by 3 mm on
the screen located 2 m downstream from the interaction region, then this
corresponds to a shift of 2.25 m/s in transverse velocity. From Eq.C.3, the
corresponding Doppler shift is (27) x 5.8 MHz, which is 3.9 T" or 8.8 v,.

The numerical plot for the bluemolasses is also given in Figure (C.1(b).
Figure |C.2l shows the deflection results for the different angles between the
atomic beam axis and the propagation direction of the laser beam. Using the
results of this deflection measurement we can utilize the detuning effect by
adjusting the propagation direction of the laser beam instead of tuning the

laser frequency itself.
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