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1 Introduction

This project was inspired by a general fascination with zone plates and the interesting work
on zone plates containing a m-phase jump done by Vinas et al. [1]. Such specialized optical
devices create a series of dark focal points in space which can be used for precision alignment.
Zone plates are optical elements which focus light by diffraction instead of refraction as in
conventional lenses [8]. A Fresnel-type zone plate has many concentric circular regions which
are alternately opaque and transparent. The widths and radii of the zones are such that
light diffracted from the center of every transparent region reaches a focal point on the axis
of the plate in phase [7]. The result is constructive interference, and the creation of a bright
spot. Such Fresnel zone plates also have minor bright spots along the beam axis, which occur
when the phase shift from adjacent transparent regions is an integer multiple of 2.

Linear zone plates have one-dimensional patterns and act like cylindrical lenses to create
line foci [10]. Introducing a m-phase jump across the center of such a zone plate effectively
inverts the focus, creating a “dark line in space” between two bright lines. A m-phase jump
occurs when one half of the zone plate has transparent regions where the other half has
opaque regions. The phase jump causes half of the light passing through the zone plate to
be completely out of phase with the other half of the light, thus causing fully destructive
interference along the dark line [1]. Sinusoidal zone plates have smooth transitions from
completely transparent regions to completely opaque regions, unlike binary zone plates,
which are strictly opaque or transparent. The smooth transitions lead to sharper focal lines,
and eliminate the minor focal lines that are present with the use of binary zone plates [3, 9].
Zone plate patterns were generated by using Mathematica. Transmittance equations were
derived for each of the four zone plates, and Mathematica’s ContourPlot function was used
to plot these equations which yielded the zone plate designs. Several 8 mm square patterns
generated in this way were imaged on to 35 mm black and white film by photographer Gene

Lewis [6].



The goal of our project was to create and evaluate four linear zone plates. There were
two binary zone plates, a conventional one and one with a m-phase jump. Likewise, there
are two sinusoidal zone plates, a conventional one and one with a m-phase jump. The zone
plates were illuminated by a HeNe laser. The interference patterns from the zone plates were
projected directly onto a CCD camera without a lens. The greatest challenge throughout
this project was making sure that the zone plate designs were of a high quality despite their

complexity.

2 Background

Zone plates were first invented by Lord Rayleigh in April 11, 1871 [7]. A zone plate is made
of alternating rings of opaque and transparent rings. Traditional zone plates are made such
that the alternating transparent rings only allow light that constructively interferes to pass
through. This causes the light coming from the transparent zones to be out of phase by no
more than 7. Zone plates have two unique configurations, even and odd. Odd zone plates
have a transparent zone at the center, whereas even zone plates have an opaque zone at
the center [7]. Despite this difference, both even and odd zone plates produce the same
interference pattern. But, the light coming from an odd zone plate is out of phase by 7 with
the light coming from an even zone plate. This concept is especially important to the idea

of m-phase jumps.

2.1 Zone Plate Basics

In order to achieve constructive interference at the focus, the alternating zones must have
specific widths such that the difference in path length from the distance and the center of
the zone plate to the focus is an integer multiple of the wavelength of the light [7]. This
ensures that the light coming from a zone is not out of phase by more than 7 with the

light coming from another zone. Therefore, if one has an odd circular Fresnel zone plate,



then the path length of the light coming from the center of the zone plate is f. If the light
coming from each transparent zone can be out of phase by no more than 7, then the path
difference between the light from the center of the first zone and the light from the edge of
the first zone must be % Therefore, the path length for the light from the edge of the first
transparent zone to the focus is f + % Furthermore, the light traveling from one edge must
travel an additional % compared to the light coming from the previous edge [7]. Therefore,
the path length of any light coming from the edge of any boundary, which is an n number

of boundaries away from the center is
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Furthermore, if the radius of the nth boundary is r,,, then by using the Pythagorean theorem,

b= VAT

Then setting the two equations equal to each other and solving for r,, the distance of

the zone boundaries from the center of the zone plate is described by the equation,
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2.2 The m-Phase Jump

For the importance of analyzing the interference pattern of the zone plate, one must analyze

the wave equation in relation to the zone plate. The wave equation is,
A
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Then by considering the light illuminating the zone plate to be uniform, one can ignore the



time dependence portion of the wave equation, thus yielding,

It is important to note why two wavefronts that arrive at the same point, out of phase
by 7, destructively interfere. This can be accomplished by examining the sum of the wave

equations of the two different wavefronts,
A A .
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Using Euler’s formula, this can be rewritten as,
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This concept is important to understand, because, the zone plate creates destructive
interference by using this property of electromagnetic radiation. By combining an even zone
plate and an odd zone plate it is possible to create destructive interference because the light
that comes through the even side of the zone plate will be out of phase by 7 in relation to
the odd zone plate.

Creating a zone plate that produces two seperate wavefronts that are out of phase by =
is known as introducing a mw-phase jump to a zone plate. This destructive interference at the

focus of the zone plate is what results in the dark focal spots.



2.3 Sinusoidal Zone Plates

Sinusoidal zone plates differ from traditional binary zone plates in that the transparency
of the zone plate varies sinusoidally from the center of the zone plate, unlike binary zone
plates which are strictly transparent or opaque [3, 9]. The phase of the light coming from
the transparent regions of the zone plate is not uniform, so binary zone plates produce
extraneous background interference patterns. They also produce minor foci, which form at
fractional distances of the focal length, because of their non-uniformity. However, sinusoidal
zone plates reduce any such background interference as well as minor foci, which helps to
further improve the quality of the dark lines, thus creating finer dark lines [3, 9.

The binary transmittance values for a zone plate which alternate from 0 to 1 are described

by the equation,
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However, this has to be simplified to a sinusoidal variation, which then yields an equation
of the form,
1 = cos kr?
tr) = =5

where k is a constant.

The value of k can be determined by recognizing that although different, both sinusoidal
and binray zone plates possess many of the same characteristics. Therefore, the equations
that describe a binary zone plate can still be used to describe sinusoidal zone plates, which
can then be used to find the constant k. It was important in this project to make the
sinusoidal and binary zone plates as consistent as possible, so it became necessary to derive
an equation describing the transmittance values of binary zone plates in a simple manner as
well. This can easily be done, by recognizing that the transmittance values have to be either

0 or 1, thus resulting in the equation,

1 =+sgn(coskr?)

t(r)



Figure 1: Zone plate designs: binary zone plate (top left), sinusoidal zone plate (top right),
binary zone plate with 7-phase jump (bottom left), and smusmdal zone plate with m-phase
jump (bottom right).

By using the equation,
n2\2
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it was possible to find the constant k, by recognizing that r,, indicates the distance at
which a binary zone plate changes transmittance, which is the same as when ¢(r) changes
from 1 to 0 or vice versa. This occurs when cos kr? is equal to 0. So, assuming r = r,, and

that n =1,
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Now the equation for the transmittance of a sinusoidal zone plate becomes,
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2.4 Interference Patterns

When zone plates are illuminated they produce distinct interference patterns, based on the
shape of the zones, and whether or not the zone plate is binary or sinusoidal. To analyze the
results of this paper, it is important to gain an understanding of the interference patterns
produced by zone plates.

The interference patterns produced by zone plates are the result of all the rays of light
being diffracted across all the Fresnel zones. The equation that describes the amplitude

distribution in the focal plane for a linear zone plate is,
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where (] is the constant phase factor,
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and for a normal binary linear zone plate,
x
P, = rect(—
) = rect(%)

given that A is the width of the zone plate. In this case the intensity distribution in the

focal plane is,

I(xg, f) = Ipsinc?(t)



where [y = ’;‘—;, t= ‘L}\—?, and sinc(t) = =22 [1].
Because sinusoidal zone plates do not have the minor foci like binary zone plates, and
an axially continuous dark line is desirable, it is important to analyze the axial amplitude

distribution as well. The equation describing the axial amplitude distribution of a regular

binary linear zone plate is,
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where (5 is another constant phse factor,
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Again assuming P, = rect(%) the axial intensity distribution becomes,

where v = 4 /ﬁ, S(x) = \/gf sint?dt and C(z) = \/gfcostht and S(z) and C(x)

are Fresnel integrals [1].
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Figure 2: The intensity distribution in the focal plane of a regular binary linear zone plate



Now, in order to analyze the intensity distribution for a zone plate with a m-phase jump,
a new P, must be introduced, which takes into account the w-phase jump. For complete
destructive interference to occur, half the light must be out of phase with the other half
of the light. This can by splitting the zone plate in half and making one side an even
configuration and the other side an odd configuration. This means that the light coming
from the even side will be exactly out of phase by m with other half, hence giving rise to the
name m-phase jump.

The P, for this type of zone plate is

i
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After substituting this function into U(zg, f) and U(0, z), the intensity distributions in the

focal plane and along the axis become,
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Figure 3: The intensity distribution in the focal plane of a binary zone plate with a m-phase
jump



However, all of these equations represent the intensity distributions of binary zone plates.
In this paper the same zone plate designs are rendered in a sinusoidal configuration as well.
Sinusoidal zone plates drastically reduce the amount of background interference occuring in
the focal plane, thus creating a much finer dark focal line. One of the primary applications for
dark focal lines created by zone plates are their applications in optical alignment, therefore
for more precision alignment a finer focal line is preferable.

The goal of this experiment is create sharper and finer dark lines through the use of sinu-
soidal zone plates, at the same time we are looking to eliminate the unnecessary background
radiation. So, it was expected that the data from the sinusoidal zone plates would show that
the dark region in the middle of the interference pattern is thinner than that of the dark line

produced by the use of binary zone plates.

3 Creating the Zone Plates

Wolfram Mathematica’s ContourPlot Program was used to generate the designs of the zone
plates. The transmittance equations for both the binary and sinusoidal zone plates were
plotted using the ContourPlot function, which generated false color images of the zone plates.
Then the sinusoidal zone plates were placed in a grayscale color space, and the binary zone

plates were placed in a binary color space. The equation

2
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was plotted in Mathematica, where A\ = 632.8nm, and f = 2m, to obtain the design for
the sinusoidal zone plate. The value for f is a result of the fact that having a focal length
significantly larger than 2, would result in a loss of quality in the image generated by Math-
ematica. On the other hand, if the focal length is significantly smaller, there would not be
enough zones in the design to create any significant interference pattern. On the other hand,

the equation used for the binary zone plate differs only in its use of the function sgn(x) to
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make the transmittance values binary,

w2

1
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For the sinusoidal zone plate with a m-phase jumps, the piecewise equation,
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was used. Whereas, for the binary zone plate with a w-phase jump, the sgn(x) function has

to be introduced again to make the transmittance values binary,
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The zone plate designs were sent to Darkroom Specialties LLC, Eugene, OR, which
transferred the designs onto trasparent slides. They downloaded the images into Adobe
Photoshop, and placed against a background. Then the images were converted to a grayscale,
RGB color space. After which the images were sent to a Raster Image Processor, which broke
them up into red, green, and blue imaging files. Each of these color channels were sent to
Lasermaster 35mm film recorder, which recorded each color channel’s luminosity to ensure
that the best quality image could be obtained. After exposing each of the films for 6.5
minutes, they were processed in an E-6 slide processor. Then after allowing them to dry, the

films were placed inside plastic frames [6].

4 Testing the Zone Plates

In order to obtain data about the intensity distributions in the focal planes of the zone
plates, it was important to illuminate the entire zone plate pattern, and capture the resulting

interference pattern. For the purpose of illuminating the zone plate, a 632.8nm HeNe laser
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(a) Binary zone plate (b) Binary zone plate with 7-phase jump

Figure 4: Binary zone plate slides

(a) Sinusoidal zone plate (b) Sinusoidal zone plate with m-phase jump

Figure 5: Sinusoidal zone plate slides

was used. However, the width of the beam was far too small to illuminate the zone plates,
which were each 8mm by 8mm. Therefore, the beam had to be significantly magnified.
However, another problem with using the light directly from the laser was that a laser beam
diverges. If a diverging beam were to illuminate the zone plate, there would be major
distortions in terms of the focal length and the size of the focal line.

So, to address this problem, a telescope system was used to both magnify and approx-
imately collimate the beam. A telescope system uses two converging lenses, placed apart
from each other by the sum of their focal lengths. The first lens in the telescope system

brings the laser beam down to a focus and then causes it diverge at a much higher rate to
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ensure the beam width is large enough to illuminate the entire zone plate. Then the second
lens collimates the diverging beam by refracting the light back towards the axis.

At first a floppy disk camera was used to capture the interference pattern. Later the
interference pattern was captured by a CCD(Charged Coupled Device) camera connected to
a computer. The CCD stored the images of the interference pattern, so that the intensity
distribution for the zone plate can be acquired later. The CCD camera was not able to

process the intense laser light, so an attenuator became necessary. Two nearly crossed

polarizers were used for this pupose.

Polarizers Zone Plate
A A CCD Camera
HeMe Laser E]
Converging Converging
Lens: f=3.5cm Lens: f=30cm

Figure 6: The experimental setup for illuminating the zone plates. Note: not to scale.

5 Results

After the pictures were taken using the CCD camera, they were compressed to a thickness
of one pixel in XV image editor. Then these new images were converted to .pgm files, and
later .dat files. The intensity values were used to create plots of the intensity distributions
in the focal planes of the zone plates.

These .dat files first needed to formatted to exclude extraneous numbers that did not
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Figure 7: The intensity distribution in the focal plane of a binary linear zone plate.

represent data. So, a simple loop was used to comment out the first 11 lines of every files.
After this each of the data files were plotted in GNUplot, to yield the experimental intensity
distribution. Then for the normal binary and sinusoidal zone plates the equation,

Az — )

I, £) = m{gsine* (S 70) o

where m is the magnitude of the peak of the distribution, z( is the value of x at which the

peak appears, and g is intensity value for the background radiation. On the other hand, for

the zone plates with a m-phase jump, the equation,
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was used to create a theoretical curve that fit the experimental values.

After plotting the intensity distributions obtained from these pictures, the data was fitted
to the theoretical curves obtained earlier.
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Figure 8: The intensity distribution in the focal plane of a binary linear zone plate with a
m-phase jump.

It is clear that the normal binary zone plate behaved as expected, although the focus was
slightly of center, likely due to the fact that the laser beam was not entirely uniform. The
data obtained from this interference pattern matches the theoretical curve rather well. The
intensity distribution for the binary zone plate with a w-phase jump matches the general
shape of the curve, although the width of the dark line is much higher than expected.

The intensity distribution for the sinusoidal zone plate agrees with the theoretical curve
for the binary zone plate rather well, although it is clear from the data that the binary zone
plate produced a much brighter focal line. The intensity distribution for the sinusoidal zone
plate with a m-phase jump on the other hand does not match any of the theoretical curves
well. It seems to be approaching a dark line, but in the middle of dip where the dark line
is expected appear, there is a sudden sharp peak. This could suggest that perhaps the laser

was not uniform enough or even that there were some irregularities in the zone plate.
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Figure 9: The intensity distribution in the focal plane of a sinusoidal linear zone plate.
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Figure 10: The intensity distribution in the focal plane of a sinusoidal linear zone plate with
a m-phase jump.
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6 Conclusion

This project was accomplished with simple tools, a basic HeNe, standard lenses, an Electrim
EDC-1000N CCD camera, and some freely available computer programs. However, a major
difficulty in this project was the complexity involved in creating the zone plates. Not only
were there m-phase jumps introduced, but they were introduced onto sinusoidal zone plates.

The results for the normal binary and sinusoidal zone plates were excellent. The data
obtained from these two zone plates matched the theoretical curve of the intensity distribu-
tion quite well. The results for the binary zone plate with a w-phase jump were not quite
as good, but they were still decent, although the dark line created by this zone plate was
significantly wider than the theoretical curve had predicted. The sinusoidal zone plate with
the m-phase jump on the other hand did not produce the expected results. This could have
resulted from shortcomings in the quality of the laser beam and the design of the zone plate.

In the future, it would be absolutely fascinating to create these dark lines while paying
closer attention to the quality of the beam by eliminating the presence of dust particles that
cause minor diffraction patterns. It would also be interesting to attempt this experiment
using a spatial light modulator to see whether or not the actual design or printing played a
factor. If any high-quality dark lines are obtained it would be interesting to attempt to align
a laser using these dark lines and then compare that to past alignment experiments done
using optical vortices. And, to add another level of complexity it would be fascinating to
introduce the m-phase jump onto a circular zone plate, which would result in a dark circle,
rather than a dark line.

Zone plates hold many possibilities for the future. One important application is a zone
plate’s ability to focus electromagnetic radiation of any wavelength, unlike conventional
lenses. For this reason, zone plates have been prevalent in the area of x-ray microscopy.
Regular lenses would fail to focus x-rays, because the indices of refraction for electromagnetic
radiation outside the visible spectrum are extremely low [7]. The dark lines created by the

m-phase jump zone plates also have some applications in optical alignment [1]. This is a new
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type of alignment technique that is different from the established techniques used with optical
vortices. Optical vortices are circularly polarized beams of light with a phase singularity in
their center, which is used in the same way that the dark line created by zone plate is used.

The application of these zone plates in the field of optical alignment can someday have a
profound impact anywhere from nuclear fusion to simple laboratory experiments. Nonethe-
less, an important step in accomplishing this would be understanding the properties of

sinusoidal zone plates on a much deeper level.
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