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Abstract

Airy beams are non-diffracting optical beams first predicted by Berry and Balazs in 1979

and first demonstrated experimentally by Siviloglou, Broky, Dogariu, and Christodoulides

in 2007. What makes an Airy beam unique is that it can be created in one dimension

and that its lobe of highest intensity propagates along a parabolic path. Airy beams can

be used for a variety of purposes including particle guidance, remote sensing and plasma

channel generation. Airy beams are typically generated using specialized optical devices

such as spatial light modulators (SLMs) or cubic phase masks. Besides cost, both of these

specialized methods have limitations: an SLM cannot be used with a high-power laser, and a

cubic phase mask is not tunable. An alternative method which is both simple and inexpensive

and also not subject to these limitations is to exploit aberrations found in ordinary lenses in

order to produce the required cubic phase modulation of the wavefront (Papazoglou, Suntsov,

Abdollahpour, and Tzortzakisin, Physical Review A, 2010).

In our research, we used the method of Papazoglou et al. to create a high-quality Airy

beam. The setup included a 635 nm fiber-coupled diode laser with a collimating lens and

negative and positive 80 mm focal length cylindrical lenses. Tilting and displacing the

negative lens creates a coma aberration (cubic phase modulation); the subsequent positive

lens removes aberrations other than the coma and roughly collimates the beam. The resulting

wavefronts were imaged with a 200 mm focal length cylindrical Fourier transform lens into

a Thorlabs DCC1545M CMOS camera and analyzed with ImageJ software. The transverse

deflection of the highest-intensity lobe of the beam was observed by moving the camera along

a linear rail to positions within a few cm of the focal plane. Were able to clearly demonstrate

the nondiffracting and parabolic propagation of the beam. We found remarkable agreement

with theoretical predictions - the observed parabolic acceleration was perfectly predicted by

the observed minimum size of the beam. We hope to continue our work on Airy beams

by using the current setup to demonstrate the self-healing properties of the beam, using

a similar setup with mirrors instead of lenses, thereby allowing a much broader range of

electromagnetic radiation to be used to create Airy beams, and to model the wavefront of

the generation an Airy beam.



1 Introduction

Airy beams are a recently discovered form of light with several remarkable properties, in-

cluding the ability to follow a curved path in free space. Airy beams are not compact light

beams in the usual sense: they have one primary lobe of peak intensity and an arbitrarily

large number of secondary side lobes of gradually decreasing intensity. The ability of Airy

beams to follow a curved path is called acceleration, since the curve followed is a parabola.

The second unusual property is called non-diffraction - the width of the primary lobe stays

constant for a much greater distance than that of a conventional laser beam of the same

minimum size. Finally, if the primary lobe is blocked it reforms as the beam propagates, a

property known as self-healing. Airy beams can be created in both one- and two-dimensional

forms. They are not just novel and fascinating but also have many useful applications that

are now being actively explored by many researchers [1] [2] [3].

Berry and Balazs first predicted the existence of Airy beams over 30 years ago in the

context of wave packets in quantum mechanics [4]. However it was not until 2007 that

their findings were realized experimentally by Siviloglou et al. [5], who found that the Airy

wave packet could be created as an optical beam by imposing a cubic phase modulation on

the usual Gaussian laser beam and transforming the resulting light wave field with a Fourier

transform lens. They used a sophisticated computer-controlled liquid crystal device, a spatial

light modulator (SLM), to create the phase variation. Three years later Papazoglou et al. [6]

proposed that the cubic wavefront variation could be created much more simply by passing

light through a tilted lens to create a normally undesirable coma aberration. Their method

is not only relatively simple and inexpensive, but also allows for the use of high-powered

lasers that might otherwise damage an SLM.

In this research, we created very high quality Airy beams by this simple method [6] and

studied their properties with an inexpensive CMOS-camera. We observed both parabolic ac-

celeration and the nondiffracting property and are currently studying the self-healing prop-

erty. We found remarkable agreement with theoretical predictions - the observed parabolic

acceleration was perfectly predicted by the observed minimum size of the beam. Our one-

dimensional Airy beams were created with a matched pair of inexpensive cylinder lenses.

We are now investigating the possibility of creating Airy beams by introducing aberrations

via mis-aligned mirrors, and we have created high-quality mirrors by coating cylinder lenses

with thin gold films. Utilizing mirrors would allow the same setup to work over a wide range

of wavelengths. Our research has shown that the formation and properties of Airy beams is

an excellent topic for student experiments in an upper-level undergraduate laboratory.
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2 Background

2.1 The Airy Wave Packet

The existence of Airy beams was first predicted by Michael Berry and Nandor Balazs in 1979

[4]. Berry and Balazs described a wave packet (a localized “burst”) that does not spread

and curves as it propogates from its origin. The Airy packet has a probability distribution

described by an Airy function at the origin (t = 0), and evolves according to Schrödinger’s

equation. The wave packet at any point in time is described by [4]:

ψ(x, t) = Ai[
B

h2/3
(x− B3t2

4m2
)]e(

iB3t
2m

)[x−(B
3t2

6m2 )] (1)

where B is a constant, m is particle mass, h is Planck’s constant and Ai(x), Airy function,

is given by [7]:

Ai(z) =
1

2π

∫ ∞
−∞

ei(zt+
t3

3
) (2)

Berry and Balazs gave a quantum mechanical description of this wave packet using semi-

classical orbits [4]. Another explanation was provided in a comment on the paper using the

equivalence principle. Greenberger showed that in a free-fall reference frame, the Airy wave

packet is a stationary state, and so does not spread [8]. Though it may seem like a wave

packet should not be able to propagate along a curved path, it is not in violation of Eheren-

fest’s theorem [3], which states that in quantum mechanics, as in Newtonian mechanics, the

center of mass of a force-free system cannot accelerate. The Airy wave packet is not square

integrable, so it does not have a defined center of mass.

2.2 Bessel Beam

Discovered [9] and experimentally demonstrated [10] in 1987, Bessel beams are the first type

of nondiffracting beam ever created. The Bessel beam is described by [10]:

U(x, y, z; k) = exp(iβz)J0[α(x2 + y2)] (3)
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where J0 is the zero-order Bessel function, and β2 + α2 = k2. A Bessel beam appears as an

inner lobe surrounded by an arbitrarily large number of weaker rings. It can be thought of as

a conical superposition of plane waves that constantly interfere to create the unique profile

of the Bessel beam. Like the Airy wave packet, the ideal Bessel beam is nondiffracting and

self healing, and is not square integrable, requiring an infinite amount of energy to produce

it. In Fig. 1, the intensity profiles of the two beams are compared. A key difference between

the two beams is that the Bessel beam exhibits radial symmetry while the Airy beam does

not.

Figure 1: A false-colored, 2D Airy beam (left) [6] and a false colored Bessel beam [11]

As it turns out, the Airy function is a Bessel function of fractional order [12]. This

justifies several of the similarities between the two beams, and allows for comparisons to be

made between them.

2.3 Truncated Airy Beams

An ideal Airy beam, like an ideal Bessel beam, requires infinite energy in order remain

completely diffraction-free and to reconstruct after being partially blocked, as well as to

follow a curved path. It is the infinite number of auxiliary lobes that enable it to have these

three properties. Therefore, in order to realize the beam experimentally, a finite version of

the Airy beam has to be implemented. The Airy function can be exponentially truncated.

At z = 0, the finite optical beam is then described by [13]:

U(x/x0, z = 0) = Ai(x/x0)exp(ax/x0) (4)
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where a > 0 and x0 is a transverse scale.

Figure 2: Ai(x) (left) and Ai(x)exp(ax), a=1 (right); generated using Wolfram Alpha

It is evident from Fig. 2 that, in contrast to the unconfined Airy function (left), the truncated

function (right) converges on both sides. Therefore, a beam described by such a function

can be generated. Of consequence is this new function’s Fourier transform:

U ′(k) = exp(−ak2)exp[ i
3

(k3 − 3a2k − ia3)] (5)

where k is the new transverse coordinate. The function in Equation 5 is Gaussian. A beam

described by (5) is a Gaussian beam with cubic phase modulation.
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3 Properties of the Airy Beam

3.1 Parabolic Acceleration

One of the most fascinating properties of the Airy beam is its parabolic acceleration. The

intensity profile of an exponentially truncated beam is given by [14]:

I(x, y, z) ∝ Ai2[
x

x0
− (

ξ

2
)2 + iaξ] · Ai2[ y

x0
− (

ξ

2
)2 + iaξ] · exp(2ax+ y

x0
) · exp(−2aξ2) (6)

where x0 is a transverse scale, ξ = z/kx20 is a normalized propagation distance, and k is the

wavenumber, equal to 2π/λ. From the above equation (6), it can be seen that the beam

changes in the x and y directions as it propagates. The acceleration of the beam, the rate at

which the peak lobe of the beam shifts transversely as it propagates, can be calculated by

[14]

A =

√
2

16π2
· λ

2

x30
≈ 0.037 · λ

2

W 3
A

(7)

The curving nature of the beam is useful in optical micromanipulation as well as curved

plasma channel generation.

3.2 Nondiffracting

Another useful feature of the Airy beam is that, like the Bessel beam, it is nondiffracting.

The Airy wave packet [4]:

ψ(x, t) = Ai[
B

h2/3
(x− B3t2

4m2
)]e(

iB3t
2m

)[x−(B
3t2

6m2 )] (8)

clearly does not spread as it propagates. As shown in Fig. 3, its intensity profile remains

the same during propagation, though it does shift transversely.

A finite optical Airy beam is not completely diffraction-free. However, it does maintain

its minimum peak lobe width (FWHM) over far greater propagation distances than does a

Gaussian beam of the same minimum width. Notice that in the finite beam (Fig. 4), while

the peak lobe follows a parabolic path and does not spread rapidly, the auxiliary lobes spread

in the opposite direction so that the center of mass of the beam does not accelerate.
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Figure 3: Propagation of an infinite Airy wave packet [3]

Figure 4: Propagation of a finite optical Airy beam [3]
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3.3 Self-Healing

Also like the Bessel beam, a partially blocked Airy beam can reconstruct. Ideal nondiffracting

beams are solutions to the Helmholtz equation and can be described by [9]:

U(x, y, z) = u(x, y)exp(iβz) (9)

An opaque object causing diffraction is said to be the complement of an aperture of

the same size and shape. Babinet’s principle states that the disturbances caused by two

complements are of equal amplitude and opposite phase.[15]. Babinet’s principle can be

applied to find the far-field result of partially blocking a beam. To find Uf , the resulting

amplitude of a beam disturbed by an opaque object, we use the equation [16]:

Uf = Ui − Uc (10)

where Ui is the incident light and Uc is the complex amplitude of the resulting diffraction

pattern from a complementary object (an aperture of the same size and shape). The far-field

intensity of the beam is then given by[16]:

lim
z→∞
|Uf |2 = lim

z→∞
(|Ui|2 + |Uc|2 − UiU∗c − U∗i Uc) (11)

The field diffracted by the complementary aperture, Uc decreases by a factor of 1/z and is

equal to 0 at z → ∞. Far-field intensity of the partially blocked beam can then be written

limz→∞ |Uf |2 = |Ui|2[16]. The ideal nondiffracting beam is completely reconstructed in the

far field.

3.4 One-Dimensional

Another remarkable feature of the Airy beam is that it can exist in one dimension. Besides

a plane wave, the Airy beam is the only non-trivial, propagation invariant solution to the

paraxial wave equation that can exist in one dimension [12]. Its propagation takes place in

(1 + 1) dimensions (one transverse dimension + propagation or time dimension), whereas

beams such as the Bessel beam, which is radially symmetric, must exist in (2+1) dimensions.

While Airy beams do exist in (1+1) dimensions, 2-dimensional Airy beams can be generated

as well.
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4 Generating Airy Beams

Airy beams are generated by imposing a cubic phase modulation on a Gaussian beam and

then Fourier transforming the result. A laser typically produces a Gaussian beam. There

have been a number of methods proposed and used in order to produce the cubic phase

modulation. Using a liquid crystal device called a spatial light modulator (SLM) [5], using

specially made phase masks [1], and using lenses [6]. Finally, a lens is used to Fourier

transform the beam. We are most concerned with the method invloving an SLM (the first

method ever used) and the method involving only lenses (used in this project), which evolved

from SLM method.

4.1 Using a Spatial Light Modulator

One can generate finite optical Airy beams by exploiting the fact that the Fourier transform of

the truncated Airy beam is a Gaussian beam with a cubic phase modulation. A laser provides

the Gaussian beam. A spatial light modulator (SLM), a reflective or transmissive liquid

crystal device, can be used to impose a cubic phase modulation. A converging cylindrical

lens is then used to optically Fourier transform the cubically modulated Gaussian beam.

4.2 Using Lenses

Any lens will have aberrations. One such aberration is called the coma.

Figure 5: a diagram illustrating the coma aberration [17]

A coma occurs when off-axis light enters a lens. The resulting image appears to have a tail

not unlike that of a comet. A coma is one of the Seidel aberrations and, in a spherical lens,

is described by the term [18]:

Fx0ρ
3cosθ (12)
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where F is the coma aberration coefficient, x0 is the height of the object, ρ is the radial

coordinate (the distance from the center of the lens), and θ is the angular coordinate. In a

cylindrical lens, the coma term changes to:

Fx0x
3 (13)

where x is the distance from the center of the lens. The total wavefront aberration in the

cylindrical lens is given by [6]:

W = −1

4
Bx4 − 1

2
(2C +D)x20x

2 + Ex30x+ Fx0x
3 (14)

In order to compensate for aberrations in a lens, a second lens of opposite focal length

can be used. In the manner show in Fig 5., a tilted lens can be used to produce the coma

aberration and a second lens perpendicular to the beam can be used to compensate for

non-cubic aberrations.

Figure 6: A picture raytrace of of light passing through the matched focal length lenses [6]

Light hitting the upper half of the lens (shown by the light gray rays) is dominated by

spherical aberration and is therefore undesirable for the purpose of creating an Airy beam.
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5 Setup

Figure 7: A diagram of the setup. A Gaussian laser beam passes through the first two. The

recollimated beam the passes through the third, Fourier, lens and into the camera.

Our setup was assembled on an optical table using standard components, with one ex-

ception. In the final setup, cylindrical lenses of -80 mm, +80 mm and +200 mm focal length

were used. The laser was a Cambridge Collimators LM635 fiber-coupled diode laser with

a collimating lens. We used a Thorlabs DCC1545M CMOS camera. Lenses as well as the

CMOS camera were mounted on a linear rail.

5.1 Imposing a Cubic Phase Modulation

Initially, we used lenses with mismatched focal lengths. We found that while Airy beams

can be generated in this manner, they are of very poor quality due to undesired aberrations.

A reason for starting with lenses of different focal lengths is the spacing between two lenses

required in order to collimate the beam. This distance can be calculated using Gullstrand’s

equation [19]:

f =
f1f2

f1 + f2 − d
(15)

In order to recollimate the beam, we want f →∞:

f1 + f2 − d = 0 (16)
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By Equation 16, one can determine that two lenses of opposite focal length would have to

be placed in contact with each other in order to recollimate a beam. This would make it

impossible to tilt one of the two lenses. Fortunately, tilting a lens changes the lens’ effective

power. The power of a tilted lens is found by [20]:

P = P0(1 +
sin2 θ

2n
) (17)

f =
f0

(1 + sin2 θ
2n

)
(18)

Despite the increased distance due to the change in focal length, it was still impossible to

collimate the beam using “off-the-shelf” lens mounts. This problem was solved by carefully

securing one lens directly to a post using double-sided tape. The beam was aimed at one

half of the lenses as shown in Fig. 6.

Figure 8: A photograph of the final setup

In order to produce the desired coma aberration, the negative lens was tilted 18 ◦. The

positive lens of equal focal length was placed 2.5 centimeters away from the negative lens in

order to collimate the light and to cancel out aberrations other than the coma.

5.2 Fourier Transforming Lens

The Fourier transform of a wave field is found in the diffracting wave field’s Fraunhofer region

[21]. The Fraunhofer region, or far-field, is a great distance from an aperture. However, the

equivalent of the far-field is found at the focal plane of a lens. A lens can therefore be used

to create the spatial Fourier transform of a source of light.

In our setup, a +200 mm cylinder Fourier transform lens was placed between the coma-

inducing lenses and the camera. The Fourier focal plane of the Airy beam is then 200 mm

after the Fourier lens. This is the z = 0 of our beam, and is where the beam is at its clearest.
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5.3 Imaging the Beam

We used a Thorlabs DCC1545M CMOS camera, not unlike a consumer webcam, in order to

view the Airy beam. At first, the camera was overloaded by the beam. We worked around

this by attaching an ND 3.0 filter directly to the camera. Using the filter also had the

advantage of attenuating ambient room light. The camera was mounted to a linear rail, and

could be moved in line with the propagation of the beam in order to image it at different

distances from the focal plane.
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6 Results

We were able to observe very high-quality Airy beams. Below is a picture of our Airy beam

at the focal plane of our Fourier lens (Fig. 9). The primary lobe of the Air beam, at less

than 50 microns, is narrower than a human hair.

Figure 9:

6.1 Intensity Profile

The intensity profile of our Airy beam was found using a free software ImageJ. Below is the

intensity profile of our Airy beam (Fig. 10) at focus along with a graph of a prediction based

on the square of the Airy function (Fig. 11).

6.2 Nonspreading

In order to understand the significance of the nonspreading property of the Airy beam, a

comparison should be made between the divergence from focus of the Gaussian and Airy

beams. The divergence of a Gaussian beam is described by [22]

W (z) = W0[1 + (
z

z0
)] (19)

where W (z) is the beam radius, W0 is the beam waist, the radius of the narrowest point,

z is distance in the along propagation direction of the beam and z0 is the Rayleigh range.
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Figure 10: Our Airy beam intensity profile at focus

Figure 11: The theoretical intensity profile of the Airy beam at focus, generated using

Wolfram Alpha.
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Rayleigh range is the distance from the beam waist over which a beam’s cross-sectional area

doubles, given by [22]:

z0 =
πW 2

0

λ
(20)

Our the peak lobe of our Airy beam exhibited very little divergence. The divergence of our

Airy beam’s peak lobe is compared with the theoretical divergence of a Gaussian beam with

the same beam waist (FWHM)

Figure 12: Actual Airy peak lobe widths (blue points) and theoretical Gaussian beam width

(red line)

6.3 Parabolic Deflection

As the Airy beam propagates, it exhibits a parabolic deflection. This can be calculated using

Equation 7:

δ(z) = 0.037λ2z2/W 3
A (21)

where δ is the transverse deflection, z is distance in the direction of the propagation of the

beam, and WA is the width (FWHM) of the primary lobe of the Airy beam. In Fig 13, the

deflection of the peak lobe of our Airy beam is compared to the theoretical path of a peak

lobe of an Airy beam of the same minimum width.
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Figure 13: Actual transverse deflection of the beam (blue points) and predicted deflection

of the beam (red line)

The slight discrepancy between the parabolic prediction and our data points is a linear

term, likely caused by a small angular offset between the propagation path of the beam and

the linear rail upon which the camera was mounted.
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7 Ongoing and Future Work

We will continue our work on Airy beams, using our existing setup, in order to investigate

the reconstructing property of our Airy beams by blocking the peak lobe with a small

obstruction. To our knowledge, Airy beam self-healing has never been demonstrated with

a one-dimensional Airy beam. We additionally plan to use mirrors in place of lenses in a

similar set up. Although we were unable to purchase stock cylindrical mirrors, we were able

to coat stock lenses with a reflective gold film. Airy beams generated in this manner could be

generated using a much greater spectrum of electromagnetic radiation than the with the lens

or spatial light modulator approach. Lastly, we hope to develop a model of the wavefront,

allowing greater ease in understanding and visualizing the Airy beam as it is created from a

Gaussian beam.

8 Conclusions

In our research, we were able to create high quality Airy beams and demonstrate their

various properties. The results we achieved in a modest teaching laboratory with low-cost

equipment were spectacular. Airy beams have a variety of application that are currently

being explored. Their curving nature makes them useful in micro particle manipulation [2],

plasma channel generation [1], in Terahertz generation [3], and remote sensing. They are

even proposed to be able to trigger lightning [23]. Our simple setup can be used to continue

researching the variety of applications of Airy beams. The rich history and physics of the

Airy beam makes it of great interest to study, and gives the simplified method we used a

great pedagogical value. Finally, by using mirrors, we hope to bring bring to life another

simple setup which could greatly expand the range of applications of the Airy beam, as a

much broader range of wavelengths could be used.
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