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Say you have a double-slit setup, where the slits are of infintesimal width:

To find the intensity I(y) at P , take the equation

I(y) =

∣∣∣∣eikl1l1 +
eikl2

l2

∣∣∣∣2 1

where k is the wave number, l1 is the distance from slit 1 to P , and l2 is the distance from
slit 2 to P .

But that isn’t useful because y is not explicitly in the equation. As l1 and l2 are re-
lated to d, L, and y, one can see the explicit relation of I(y) to y using the Pythagorean
Theorem:
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Because y and d are assumed to be much smaller than L, the expression
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is very

small. This means that the square root can be simplified using a shortened version of
binomial expansion. For example, the expression
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if x is very small.
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Leaving that for the moment, let us go back to the original equation for I(y) (Eqn. 1) that
needed to be simplified.

I(y) =

∣∣∣∣eikl1l1 +
eikl2

l2

∣∣∣∣2
Remember that y and d were assumed to be much smaller than L. Because of this, Eqn.
5 can be simplified, as L overpowers the equation:
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Now, Eqn. 1 can be rewritten as:
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The exponent l1 and l2 were not simplified thus because an exponential function changes
very rapidly and thus even an approximation makes a great deal of change.

Eqn. 8 can be written as
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The expression can now takes on the form eix + e−ix , which is equal to 2 cos(x) !
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Using the identity: 2 cos2 x− 1 = cos 2x, it follows that

2 cos2 x = 1 + cos 2x and thus 4 cos2 x = 2
(
1 + cos2 x

)
Using the above identity, Eqn. 10 can be rewritten as:
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Now, to simplify the argument in the cosine function. Using the expressions for l1 and l2
that were derived earlier, this can be done relatively easily.

l1,2 = L

1 +
1

2

(
y ± d

2

L

)2
 12

l1 − l2 =
L

2

(y + d
2

L

)2

−

(
y − d

2

L

)2
 =

1

2L

[(
y +

d

2

)2

−
(
y − d

2

)2
]

13

As this is the difference of two perfect squares, this can be simplified easily:
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This simplification can now be plugged into Eqn. 11.
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y
L = tan θ ' sin θ for very small values of θ. (θ is small because y is very small compared to

L). The wavenumber, k can be written as 2π
λ . Now Eqn. 15 can also be written as

4

L2
cos2

kyd

2L
=

4

L2
cos2

dπ sin θ

λ
16

The point of this is to find at what value of θ, or y, will the maxima/ minima of intensity
occur. A cosine function reaches its extrema when its argument can be written as nπ,
where n is an integer. To find where Eqn. 16 has maxima or minima, its argument must
be set equal to nπ. First, this will be done in terms of y.
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But remember that k = 2π
λ , so

y =
nLλ

d
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Now the extrema of intensity will be found in terms of θ.

dπ sin θ

λ
= nπ ; d sin θ = nλ

There’s the equation λ = d sin θ!


