Ariana Ray

Say you have a double-slit setup, where the slits are of infintesimal width:
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To find the intensity I(y) at P, take the equation
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I =
(y) I + L

where k is the wave number, [ is the distance from slit 1 to P, and I is the distance from
slit 2 to P.

But that isn’t useful because y is not explicitly in the equation. As [y and Iy are re-
lated to d, L, and y, one can see the explicit relation of I(y) to y using the Pythagorean
Theorem:
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Because y and d are assumed to be much smaller than L, the expression | £ 72 is very

small. This means that the square root can be simplified using a shortened version of
binomial expansion. For example, the expression
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(1+2%)2  can be simplified to 1+ % if z is very small.
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can be similarly simplified to L [1+ S\ )
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Leaving that for the moment, let us go back to the original equation for I(y) (Eqn. 1) that
needed to be simplified.
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I =
(y) L + 5

Remember that y and d were assumed to be much smaller than L. Because of this, Eqn.
5 can be simplified, as L overpowers the equation:
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Now, Eqn. 1 can be rewritten as:
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The exponent [; and l» were not simplified thus because an exponential function changes
very rapidly and thus even an approximation makes a great deal of change.

Eqn. 8 can be written as
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The expression can now takes on the form e + ¢~ | which is equal to 2 cos(z) !
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Using the identity: 2cos? 2 — 1 = cos 2z, it follows that

2cos’z =1+cos2z and thus 4cos’z =2 (1 + cos? :B)
Using the above identity, Eqn. 10 can be rewritten as:
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Now, to simplify the argument in the cosine function. Using the expressions for {; and Iy
that were derived earlier, this can be done relatively easily.
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As this is the difference of two perfect squares, this can be simplified easily:
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This simplification can now be plugged into Eqn. 11.
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4 = tan @ ~ sin 6 for very small values of 6. (6 is small because y is very small compared to
L). The wavenumber, k can be written as 27” Now Eqn. 15 can also be written as
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ﬁ COS ﬁ = ﬁ COS b\
The point of this is to find at what value of 6, or y, will the maxima/ minima of intensity
occur. A cosine function reaches its extrema when its argument can be written as n,
where n is an integer. To find where Eqn. 16 has maxima or minima, its argument must
be set equal to nw. First, this will be done in terms of y.
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Now the extrema of intensity will be found in terms of 6.
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There’s the equation A = dsin 6!



