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Abstract

An adjustable spiral phase plate and computer-generated holograms were inves-
tigated as methods for creating optical vortices. The phase plate was created by
cutting a plastic microscope cover slip from a corner to its center and separat-
ing the resultant tabs by inserting a uniformly thick wedge between them. The
computer-generated holograms were designed by mathematically interfering an
oblique plane wave with an optical vortex in Matlab; we then printed them on

common overhead transparencies.

The two devices were tested in an originally developed interferometer, and the
intensity profiles of vortices created by shining a laser beam through the phase
plate and CGHs were measured. The curvature of the phase plate was mapped
using an optical scanning setup. A composite-vortex grid hologram was designed
for future use in an orbital angular momentum sorter in conjunction with the
spiral phase plate. Both devices simplified previous designs and proved to be a

highly effective means of generating optical vortices.



1 Introduction

Vortices are a ubiquitous phenomenon in nature. They have long been observed in hurricanes,
tornadoes, and even something as simple as the swirl of coffee in a mug. It was only in 1974,
however, that Berry and Nye first put forth the theory that a light field could assume the
character of a vortex [1]. Since then, optical vortices have become more than a mathematical
curiosity and have proved their practical value in numerous fields, including optical tweezing
and quantum computation [2].

An optical vortex beam is characterized by a doughnut-shaped intensity distribution with
a phase singularity, and hence zero field amplitude, at the center. Optical vortices feature
a screw-shaped topological wavefront dislocation, which can be visualized as a helical phase
ramp around the field’s dark center. The phase varies linearly with the azimuthal angle
¢ as described by the phase term exp[il¢]. The annular intensity profile (I > 0) provides
normalizing forces useful in stabilizing trapped particles, and the spiral phase distribution
endows each photon with an orbital angular momentum of /4. The orbital angular momentum
of an optical vortex is used to apply torques to particles in an optical tweezers setup and,
more recently, has served as a medium for encoding information [3].

Two of the most common means of producing optical vortices are spiral phase plates and
computer-generated holograms. Spiral phase plates directly impose the vortex structure on
an incident beam by linearly varying the optical path length around the circumference of the
device. Computer generated holograms (CGHs) are created by mathematically interfering
an oblique plane wave with an optical vortex and function by diffracting a plane wave into
multiple orders of optical vortices of distinct topological charge. CGHs can also be used to
determine a vortex’s topological charge.

In the current research simple and inexpensive designs for spiral phase plates and CGHs
were implemented and further simplified, and a composite-vortex grid CGH was created for
future use in an orbital angular momentum sorter. This paper includes a discussion the

theory behind the function of these devices and an analysis of their performance and efficacy.



2 Theory

2.1 Optical Vortices
2.1.1 The Fundamental Gaussian

The geometry of a laser cavity determines the gain material that will be used to produce
the beam. The distinct beams that develop, or modes, are solutions to the complex wave
equation:
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Generally, several modes will compete for the gain material with one dominant but os-
cillating mode. Commercial lasers are usually designed to suppress modes other than the
fundamental Gaussian, which minimizes fluctuations, tightens the beam waist, and betters
the beam quality.

The fundamental mode is a specific solution to the wave equation, and it may be described:
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where R(z) = zy/1 + (z/20)? is the wave-front radius of curvature, w(z) = wgy/1 + (2/20)? is

the beam radius, and v is the Guoy phase.

2.1.2 The Laguerre-Gaussian

Traces of the equation above are evident in the function that describes a Laguerre-Gaussian

beam, or optical vortex [5]. In fact, the zeroth order LG beam simplifies to a pure Gaussian.
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where L” is a generalized Laguerre polynomial:

& " m n+k)!
La@) =2 (=1) (n—'n(z)!(k—gm)!m!x

m=0

m

The two indices of the mode are [ and p which describe the total phase change around
the circumference of the vortex (27l) and the number of radial maxima (p + 1), respectively.
For the purposes of this discussion, all beams will be assumed to have p = 0.

The distinguishing characteristic of optical vortices is found in the exp [il¢]. The angle
¢ resides in the plane transverse to the direction of beam propagation and introduces the
element of azimuthal variance in LG beams. As ¢ varies from 0 to 27, the phase of light
around the circumference is calculated by l¢. A suitable analogy is found in the Earth. If
we are to look down upon the north pole, we would see lines of longitude (indicative of the
azimuthal angle and, hence, the phase of light) converging upon the center. At the north
pole, there is no distinct longitude. Likewise, at the center of an optical vortex, there is a
singularity in the phase, and the amplitude of the beam is necessarily zero. This gives rise

to optical vortices’ dark center and doughnut shaped intensity distribution.

Figure 1: Comparison between the phase in a cross section of an optical vortex and longitude
lines at the north pole

The topological charge of a vortex is another name for its [-value. If we are to connect
all points of equal phase in a charge one vortex, we would create a helical phase ramp. The
locus of points of equal phase in a charge two vortex would produce a double-helix. The

trend holds true for larger [. The radius of an optical vortex increases with [.
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2.2 Methods of Production

Common methods for producing optical vortices include intra-cavity circular absorbers, astig-
matic mode converters, computer-generated holograms (CGHs), and spiral phase plates.
Intra-cavity circular absorbers significantly reduce the intensity of the beam and require
access to the laser cavity, rendering them impractical for use in many circumstances. Astig-
matic mode converters rely on high-order Hermite-Gaussian modes of certain indices [6],
making them more cumbersome to set up. This research focuses the two latter methods of

production: CGHs and spiral phase plates.

2.3 Spiral Phase Plates

2.3.1 Traditional phase plates

Figure 2: The increasing thickness translates to an increased optical path length and, thus,
a phase shift

Spiral phase plates function by directly imposing a phase shift on the incident light. They
are constructed from a piece of transparent material with gradually increasing, spiraling
thickness. Light slows down in optically dense media, taking more time to cover a given
distance inside the media than outside in air. It simplifies matters, however, to approach
phase shift in terms of distance rather than time. Thus we define the idea of the optical path

length, the apparent distance light travels in any medium:

A= /n(s)ds



where n, the index of refraction, is a function of distance s. The thicker the plate, the
longer the optical path length, and the greater the phase shift. The spiraling thickness of
a phase plate creates the spiraling phase distribution of an optical vortex. In order to be
effective, the phase plate must be smooth and accurately shaped to a fraction of a wavelength.
Furthermore, even if it is successfully produced, it is only applicable to one wavelength of

light and one topological charge.

2.3.2 Adjustable spiral phase plates

A more versatile means of creating optical vortices is an adjustable spiral phase plate [7].
These phase plates can be used with multiple wavelengths and produce a range of topological
charges. They were created by twisting a piece of cracked Plexiglas and orienting the device
so that one tab of the phase plate was directly perpendicular to the incident light, and the
other tab was bent at some angle # away from the other. A laser directed at the end of the
crack will then produce an optical vortex because of the azimuthally varying tilt around the

center of the phase plate.

N

Figure 3: The two sides of the crack in the phase plate are separated by an angle

2.3.3 Optical Path Length as a Function of Tilt

Tilting any transparent object with two parallel sides causes a change in optical path length.
The derivation is slightly elusive, but we finally found the relationship between tilt angle and

change in optical path length as follows.
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Figure 4: Change in optical path length due to a rotating transparent medium with parallel
sides

Over the course of some distance L, light must pass through two different media: air
(n1) and the transparent medium (ny), where ny > n;. Let us consider the first case of the
un-rotated plate. The distance traveled in air is simply /; = L — d;, and the distance in the
medium, d; = d; (d; is defined to be the width of the plate). The second case is slightly more

complex. A second angle ¢ is introduced such that, by Snell’s law:

nysind

sin ¢ =
T2

The distance traveled in air must compensate for the effects of refraction:

ly =L —djcos (8 — o)

As does the distance in the medium:

The change in optical path length is then described by:

AN = (lfm + dfng) — (llnl + dﬂlg)



Substituting and rearranging, we achieve this equation, which will be used later to analyze

the experimental spiral phase plate:

AN = d; [nl (1 - W) e <cos1(¢>) - 1)]

2.4 Computer Generated Holograms

2.4.1 Holograms

A picture taken with black and white film records only one facet of a scene: the intensity of
light (the square of the amplitude of its electric field). Information about the phase of light,
one of the factors that makes objects appear three-dimensional, is completely lost. Holograms
offer a means of preserving the phase. In essence, a hologram is just an interference pattern
created by a plane reference wave and light scattered off a selected object.

A diffraction grating is created by developing the photoplate, and shining the reference
beam through this grating exactly reproduces the light, in intensity and phase, that was
initially scattered off the object. Looking through the grating provides the illusion that the

original object is truly there.

2.4.2 Forked Gratings

CGHs are used to create optical vortices in precisely the same manner. If we are to record the
interference pattern between a plane wave and an optical vortex on a photoplate and later
shine the plane reference wave through the grating, we would correctly expect to produce an
optical vortex identical to the former one. We can theoretically produce a CGH as follows
8].

The simplest representation of a phase singularity (optical vortex) can be written as

E(r,0,z) = Eyexp(ilf) exp(—ikz)



where [ is the topological charge and # is an angle in the plane transverse to the direction of

propagation. Next, consider a plane wave u, propagating obliquely to the axis

u = exp(—ik,x — ik,2)

Assume the recording device is located at z = 0 for simplicity. The intensity distribution

may then be found by squaring the sum of the two amplitude functions:

I =1+ E2+2E,cos(k,x — 10)

A Fourier transform of this yields the transmittance function actually used to create the

diffraction gratings [9].

T(r,0) =Tyexp {ia cos (l@ - 2;7" cos 9)}

where « is the amplitude of the phase modulation, Tj is the constant absorption coefficient

of the hologram, and A is period of the grating (fringe spacing).

Figure 5: An [ = 1 grating or the interference pattern created by an oblique plane wave and
charge 1 vortex

Interference patterns between plane waves and optical vortices are characterized by a fork
in the center. The charge of the vortex can be determined by counting the number of forks,
or subtracting one from the number of prongs. Because these are diffraction gratings, shing a
plane wave through one of them will actually create multiple vortices of {..., =1, 0, +[,...}

charge, where the negative charges have the phase ramp in the opposite direction.
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Figure 6: An [ = 4 grating. Note how there are 4 forks (5 prongs)

3 Experimental Procedure

3.1 Materials

The materials used for creating the devices that generated optical vortices were fairly meager.
Plastic cover slips (22 mm square, 0.25 mm thick) were cut to produce an adjustable spiral
phase plate. The CGHs were developed in Matlab 7, reduced using ImageMagick and printed
at 600dpi on common transparencies.

Equipment used for testing these devices was more extensive. Most important was the
Melles Griot HeNe (A =632.8 nm) laser, output at 30mW. Two 50-50 non-polarizing beam
splitters and about a dozen mirrors, all ThorLabs, were used among the interferometer, the
surface scanning setup, and the CGH setup. A ThorLabs photodetector, model DET-110,
and a digital multimeter were used to experimentally determine the relationship between
medium tilt angle and the phase shift. Images and intensity distributions were recorded on

either the Sony Mavica or the Powershot SD400 digital cameras.

3.2 Adjustable Spiral Phase Plate

A plastic microscope cover slip was chosen as an alternative material to Plexiglas for the pro-
duction of a spiral phase plate. Attempts to replicate the Technion’s method using Plexiglas
proved unsuccessful for a number of reasons. The Plexiglass was extremely difficult to crack
in a controlled manner and most fractures ocurred arbitrarily. Even if a desirable crack was

stumbled upon, the crack tended to propagate while twisting the material eventually caus-
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ing the entire piece of Plexiglas to snap in half. In contrast, a cover slip is an inexpensive,
optical-quality material that is easily cut with scissors and manipulated without nearly as
much concern over durability or crack propagation as Plexiglas. For the experiment, a cover
slip was slit radially from the center to a corner. A holster was designed for keeping the

phase plate secure and controlling the angle between the two tabs.

Figure 7: The screw at the top of the holster raises and lowers a piece of Plexiglas into the
slit of the cover slip, allowing control over the angle between the two sides

3.2.1 The C.J. Interferometer

The C.J. interferometer was developed independently at the lab and is a hybrid between a
Mach-Zehnder and a Sagnac. Its advantage over a Michaelson interferometer is that the laser
never retraces its path, so if we put the spiral phase plate in one arm of the device, the laser
does not go through it twice, skewing results. The C.J. offers more space than a Sagnac, so
placing an object in one arm of the interferometer does not interfere with the path of the
laser in the other. Finally, the C.J. allows for more spatial control over the beam than the
Mach-Zehnder.

Placing the spiral phase plate in one arm of the interferometer resulted in the forked

interference patterns that are characteristic of optical vortices. Turning the screw on the
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Figure 8: The spiral phase plate is placed in one arm of the C.J. interferometer and the
resultant optical vortex is interfered with a plane wave from the other arm

holster clockwise spread the cover slip’s slit further apart, and more forks appeared, indicative
of higher order vortices. Determining how well the device was working, however, required a

better understanding of the surface.

3.2.2 The Surface Scan

The lab equipment for performing a surface scan was quite limited, but the setup, fashioned
out of very basic materials, functioned surprisingly well. A lens was placed such that the
laser beam, once reflected off of a mirror, came to a focus on the spiral phase plate secured
in the holster mounted on a two-dimensional translator. Part of the beam reflected off the
phase plate and hit the surface of a Plexiglas screen covered with graph paper. The holster
was translated in the horizontal and vertical directions in 0.508 mm (2/100 in) increments
over a 10.16 mm by 10.16 mm (0.4 in by 0.4 in) area centered on the middle of the phase
plate forming a 21 x 21 point grid on the cover slip. The position of the laser beam was
plotted on the graph paper every time the phase plate was translated. In actuality, only 430
points of data were taken because 11 of the points resided directly on the slit of the phase
plate causing the light to scatter.

A process was developed to convert the data on the graph paper into the more meaningful

values of the x and y tilt of the spiral phase plate. Figure 12 is a closeup schematic diagram
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Figure 9: Surface scan experiment

of the laser reflecting off the phase plate, which is tilted at some angle (6,,,6,,). If 6,2 =0
(the phase plate is parallel to the initial laser beam and the screen), then the beam will
intersect the screen at some z(, which is used as a reference for all points. Considering the
right triangle formed by L, the distance between the phase plate and the screen, and the
angle 20,, — 20,,, x, an arbitrary point where the beam falls on the screen, may be defined

by

N Zo screen x
/LQ,”

mirror

Figure 10: Closeup schematic diagram of laser path during surface scanning

Where the laser intersects the screen in the vertical direction depends upon 6,, as well

as Op,: the smaller 0,, is, the greater the distance before the beam hits the screen, and
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consequently, the higher it will hit the screen. Thus y, the vertical coordinate of an arbitrary

point where the beam falls on the screen, may be defined by

y = /L2 + L2 cot®(2(6 — Op,)) tan(6,,)

where \/L2 + L2 cot?(2(0m — 0pe)) is the length of the beam’s path projected onto the plane

of the optical table. These two equations yield:

1 L
Op = O — =t -1( )
P g A T + 2

and

0,, = tan™" Y
Ly/1+ cot?(2(0m — Oy0)

The phase shift induced on a light beam depends on the angle between the incident light
and the surface normal. Thus, a total tilt 6;, which describes this angle, is defined as a
function of its components ¢, and 6, by means of a common spherical trigonometric identity

to be:

cos(6;) = cos(6,) cos(0,)

The x and y coordinates of each data point were read off the graph paper and organized
in a spreadsheet. All 430 data points were then translated into their total tilt equivalent via

the equations above in Matlab.

Figure 11: Visualization of 0, and 0,
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3.2.3 Controlled Tilt Experiment

In order to confirm that the equation relating tilt angle to change in optical path length
was derived correctly, an uncut cover slip was placed on a rotation stage in one arm of the
interferometer, and the fringes of the interference pattern were projected onto the face of
a photodetector. The cover slip was rotated from 90° (perpendicular to the incident light)
through 120° at 0.5 degree intervals, and the voltage output from the photodetector was
recorded and graphed. Peak voltages indicate the middle of a fringe (a net 27 phase shift,
considering the initial 90° position corresponded to the photometer being exposed to the
center of a fringe), and voltage minima represent the dark area between fringes (a net §
phase shift). One cycle from peak to peak or trough to trough implies a change of one
wavelength in optical path length.

In the equation from section 2.3.3 AA may be replaced with mA\, so that the change in
optical path length is represented by some m number of wavelengths. Dividing both sides by
A yields an approximately parabolic curve that relates AA in wavelengths to the tilt angle 6.
In order to achieve the cyclical pattern demonstrated by the data, it is only needed to take

the cosine of the function and multiply the argument by 27:

p0)=cos (20 [ (1= 5557 )+ (i 1))

The theoretical model fits the experimental graph quite nicely. It is important to note

that the more tilted the phase plate was, the less additional rotation was necessary to produce
any given phase shift. That is why the data points on each cycle get succesively scarcer. Note
that the function actually graphed was k(I(0)) + 1), where k = 8.2 in order to fit the curve

to the voltages measured by the photometer.
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Figure 12: Phaseshift vs. Angle

3.2.4 Phase plate analysis

We used the function above to associate all 430 data points of 8; with a phase shift in Matlab.
The graph on the left is the plot of #; against position on the phase plate, and the figure on the
right is a map of the phase of light leaving the spiral phase plate. The slit is represented on the
left side by a line of 11 uniformly colored squares. The color of the figure is mostly constant
along any given radius, confirming that the phase shift is azimuthally dependent(holding the
paper farther back may help to see this more easily). A change in color from light to dark to
light or dark to light to dark indicates a phase shift of 2r. The phase map suggests that the
phase plate is set for creating an [ = 9 vortex. In the area directly left of the slit, the phase
pattern is slightly disordered. Most likely, this may be attributed to irregular twisting of the
left tab by the wedge inserted between the two halves.

It is important to note that in order for the phase plate to function, it must be situated
such that one tab is directly perpendicular to the incident light, and the other is bent away.
This is so the optical path length monotonically increases, resulting on a constantly increasing
phase shift around the circumference of the phase plate. If the phase plate was positioned
so one tab was bent towards the incoming light and the other tab was bent away at an

equal angle, then the vortex phase pattern is destroyed. This was demonstrated by artifically
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Figure 13: The spiral phase pattern is evident in this phase representation of the area of the

phase plate scanned

tilting the phase plate in Matlab so #; for both halves of the cover slip were equal.

Tilt {radians)

Fuosition (in) 0z 02 Fosition {in}

Figure 14: If both sides of the phase plate have the same absolute tilt relative to the incident
beam, the vortex pattern is destroyed

It is evident on both sides of the slit that the phase has acquired radial dependence. A
path traced from the center to the top left or bottom left corner of the phase map would

pass over several changes of phase, a pattern that does not conform to the phase structure

of an optical vortex.
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3.3 Vortex Analyzer

CGHs are used to create vortices, but they may also be used to analyze them. Shining an
optical vortex of the same topological charge as the one used to create the CGH will produce
a plane wave. In order to test a beam for its topological charge, one could theoretically
shine the beam through an [ = 1 grating, an [ = 2 grating, an [ = 3 grating,... and the
grating that produced a plane wave output would correspond to the [-value of the vortex
beam. It is possible, however, to speed up this process by using the principle of conservation
of topological charge [4], which essentially states that the topological charge of a composite
vortex is the sum of the charges of its components. Therefore, one could superimpose two

CGHs orthogonally and create composite vortices of a range of topological charges.

|

Figure 15: Left: [ = 1 grating. Right: | = 3 grating.

O
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Figure 16: The vortices and their respective topological charges created by the gratings above

Shining a plane wave through Figure 19 would create vortices ranging from | = —4 to
[ = +4. As aresult, this grating is also capable of analyzing vortices of the same charge range.
For example, shining an [ = —3 vortex through this grid would cause a plane wave beam
(Gaussian intensity distribution) to appear in the spot a charge -3 vortex would normally be

in under the condition of an incident plane beam.
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Figure 17: Interference patterns for the [ = 1 vortex and the [ = 3 vortex are superimposed
to create this grating, which produces composite vortex grids
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Figure 18: The vortex grid pattern created by the above composite CGH

A modified version of the transmittance function from section 2.4.2 (adjusted for Cartesian
coordinates) was used in Matlab to create the above CGHs. The function was calculated for
1800 x 1800 points in a 16 x 16 square centered on the origin. The fringe spacing was set to
1. The image created was exported from Matlab and cropped in The Gimp (image editing
software) to 2934 x 2934 pixels. It was reduced to 120 x 120 pixels in ImageMagick then
printed at 10% its size onto common transparency paper at 600dpi by a laser printer.

A previous method for creating CGHs involved taking a film photograph of a large printout
of the desired design, then having it developed into a slide from the negatives. This would
be a costly and tedious process. It is possible to test grating designs immediately with a
device called a spatial light modulator, which can adjust the intensity and/or phase of light
using a small, high resolution led display, but these cost thousands of dollars. The method
developed above is both inexpensive and immediate, and marks a further simplification of

the methods used to create optical vortices.
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4 Conclusions

The adjustable spiral phase plate constructed from a plastic microscope cover slip was demon-
strated to be an effective means of producing optical vortices. The phase distribution of the
vortices produced was investigated by performing a surface scan of the phase plate, and
conclusions were drawn about the cover slip orientation necessary produce a spiral phase
structure. A simplified method for generating optical vortices using computer-generated
holograms was also developed and implemented in the form of a composite vortex grid.
Three areas appear promising for future research. First is the construction of an orbital
angular momentum sorter [3] capable of encoding information (different [-states) in an optical
vortex by a spiral phase plate and decoding information through a composite vortex analyzer
similar to the one created above. It would be interesting to see how far apart the encoding
and decoding devices could be placed before beam degradation and information corruption.
Second is an investigation of amplitude grating efficiencies. Gratings may be blazed to
focus the intensity into a particular order vortex or annular to provide cleaner rings [9].
A study of what combinations of modifications would produce an optimal vortex would be
very useful. Third is experimenting with optical vortices produced with nonspiral phase
plates [10]. Vortices can be generated by linearly phase shifting one half of a laser beam
with a curved transparent plate; the simplicity of the method is both highly appealing and

intriguing.
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