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1 Introductory Number Theory

1.1 Functions

A function f maps each element a in a set A to a unique element b in a set B. For all a € A,
the unique element b is represented as f(a). The notation f: A — B indicates that f maps
elements of set A into set B.

An example of such would be a function f : Z — Z (where Z is the set of integers) that

is defined as f(x) = z — 2. Using this function, f(9) = 7.

1.1.1 Composition of Functions

Let f: A— Band g: B — C be functions. We can then note the composition of f and
g as g o f, or simply h, an entirely new function where h : A — C. h(x) is therefore the
equivalent of g(f(z)).

For instance, let f : Z — N (where N is the set of natural numbers) be defined as
f(x) = 2% and g : N — Z be defined as g(y) = 8 — y3. The composition of the two functions
maps from integers to integers: go f : Z — 7Z. The function derived from the composition

h(z) may be written as follows: h(z) = g(f(x)) = g(x*) = 8 — x'* (RSA Laboratories).

1.2 Modular Arithmetic
1.2.1 The Modulus

The best analogue to modular arithmetic is a comparison standard 12-hour clock and a
military clock. Both clocks read the same time throughout the morning until an hour after
noon, when they diverge. The military clock reads 13:00, while the standard clock reads
1:00. The standard clock essentially wraps around every 12 hours to its initial position.

This concept was first introduced by Gauss in the 19th century through what he de-



scribed as a modulus, a distinct value after which numbers would wrap around. In the
aforementioned example, the modulus would be 12. The notation for this is as follows:

Given integers a, b, and n (n > 0), if n | @ — b (notation for n divides a — b or 22 € Z),
then a and b are considered congruent modulo n. This is written as a = b (mod n), where
n is the modulus.

For example, 8 =3 (mod 5) because 8 — 3 is divisible by 5.

1.2.2 Properties of Modular Arithmetic

If a, b, ¢, and d are integers such that a = ¢ (mod n) and b=d (mod n), then

a+b=c+d (mod n)

and
ab=cd (mod n)

Furthermore, using the modulus n, it is possible to create congruence classes of integers
(RSA Laboratories). In other words, for an integer a, its congruence class contains all other
integers which are equivalent to a modulo n. The set of such integers is written as [a] where

la| =a+nZ={...,a—2n,a —n,a,a+n,a+2n,...}

For example, if @ = 12 and n = 7, then the congruence class for 12 modulo 7 would
be the set {...,—2,5,12,19,26,...}. This means that we could write 12 = —1 (mod 7),
12=5 (mod 7),12=12 (mod 7), etc.

Addition and multiplication of congruence classes is fairly straightforward. It is defined
that [a] + [b] = [a + b] and [a] - [b] = [ab].

It simplifies arithmetic if we represent a with the smallest nonnegative number a, present
in the congruence class [a]. Examining the example above once more, we see that a = 12
and [a] := {...,—2,5,12,19,26,...}. Thus, a, = 5 because 5 is the smallest nonnegative
element of [a].

Furthermore, Z,, is defined to represent the set of congruence classes modulo n. Meaning



for all integers a and their respective congruence classes [a], we take the unique a, for the
set Z,. Consider, for example Zg. Find the congruence classes of all elements in the set
{...,—1,0,1,...}. For a = —1, we would have {...,—5,—1,3,...}, a = 0 would yield
{...,—4,0,4,...}, and a = 1 would give {...,—3,1,5,...}. The a, for these congruence
classes would be 3, 0, and 1 respectively. Continuing this for all a, we would find that
Ze¢ ={0,1,2,3,4,5}. This is generalized to Z, = {0,1,...,n — 1}.

In addition, Z; is defined to be the set of congruence classes modulo n, or a,, that are
elements of the set {1,...,n — 1} such that ged(a,,n) = 1. Another way of saying this is to

define Z? as the set of all relatively prime numbers to n. Thus Z§ = {1, 3,5, 7}.



2 Groups

2.1 Addition in Z, and Multiplication in Z,

There are special properties of addition in Z, and multiplication in Z,* where p is a prime
number.

In Z,:

1. Addition is associative.
a+(b+c)=(a+b)+c

2. There exists an additive identity element 0, such that for all a

a+0=0+a=a

3. For all a € Z,, there exists b such that a +b = 0, where b = —a and —a is the additive
inverse of a.

In Z;:

1. Multiplication is associative.

a(bc) = (ab)c

2. There exists a multiplicative identity element 1, such that for all a

3. For all a € Z;, there exists an integer b such that ab = 1, where b = a ! and a7 ! is the
multiplicative inverse.

2.2 Properties of Groups

Sets with properties like those described above are considered groups. A more formal defi-
nition is as follows:
A group is comprised of a set G, which may be finite or infinite, and a binary operation ,

where * : G x G — (. This means that the set GG is closed under the operator * because G



is mapped back onto G. Thus for any a, b € G, a*b € G as well. In addition, a group must
satisfy the now generalized axioms below:

1. The operation * is associative.
ax(bxc)=(axb)xc
2. There exists an identity element e € GG, such that for all a € G
axe=exa=a
3. Forall a € G, there exists an inverse b € G (also denoted a™'), such that axb = bxa = e.

If the operation * is also commutative, meaning a x b = b *x a for all a,b € G, then the

group is said to be abelian (Weisstein, Groups).

2.3 Theorems and Proofs
2.3.1 The identity element of a group is unique.

This can be rephrased as follows: If a € GG has the property such that for some other element
xr € G,a*xx =ux+*a=x then a is the identity element.
Proof Consider a member x € GG such that a * x = x. Because G is a group, every member

in it has an inverse. Furthermore, the group is closed under multiplication. Thus we have

1 1

(axx)xx™ =x*xax”

We can use the associative property on the left side and the inverse property on the right to
yield

ax(xxax ) =e

And again applying the inverse axiom:

a*xe=e¢e



Using the identity axiom, we finally prove the theorem:

2.3.2 Ifaxx=bxz,thena=0

This is known as the right cancellation law, because the x on the right-hand side is being

“canceled.”
Proof
a*xxr=bxzx
(axx)*xa ' = (bxx)*a”

ax(xxz ) =bx(zxz )

axe="bxe

233 Ifxzxa=z+xbthena=2>

This is known as the left cancellation law.
Proof

rxa=x*b

exa=exb

a=b



2.3.4 The inverse of axbis b~ ' xa !

If b= % a~! is the inverse of a * b then when operated on by *, the returned value should be

e, the identity element.

Proof

2.3.5 If a and b are elements of a group and a*b = ¢, then a = b~!

Proof

236 (a)'=a

Proof



We now use the theorem above by letting @ = a~! and b = a. Substituting, it follows that

2.4 Cayley Tables

a = (afl)fl

One of the most familiar instances of Cayley tables is one that many have seen in elementary

school: the multiplication table (Dogfrey).

x10 1 2 3 4
010 0 0 0 O
1940 1 2 3 4
210 2 4 6 8
310 3 6 9 12
410 4 8 12 16

One can find the product of 2 and 3 by finding 2 on the left side and 3 on the top side

and finding where their respective row and column intersect. In this case, they coincide at

the number 6, meaning that 2 x 3 = 6.

2.4.1 Cayley Tables and Groups

Cayley tables can also be used to represent groups. Suppose we have a set of commands we

can give to a soldier (Dogfrey):

e Stand at Attention

e Rightface

o Leftface

e Aboutface



Accompanying this set of commands we have the operator “followed by.” For instance,

one could issue the following command to the soldier:
“Rightface followed by Aboutface!”

The soldier would then turn to his right and then turn completely around. This command
would be the equivalent of a simple “Leftface!”

Suppose the solider were told,
“Stand at Attention followed by Rightface!”

“Stand at Attention” thus functions like an identity element. To verify whether or not
these commands and the operator form a group, we can construct a Cayley table. The
commands have been abbreviated to form the set {A, R, L, B}. The letters correspond to
the bolded characters in the list of commands above. Similarly, the operator “followed by”

has been replaced with .

x| A R L B
AlA R L B
R|R B A L
L|L A B R
B|B L R A

To find the result of “About face followed by Leftface!” we have to use the table and
look up A x L. The result is R or “Rightface!”

There are several observations worth making here. First, the table is symmetrical with
respect to the main diagonal. This indicates commutativity and labels this set an abelian
group. Also A is the identity element because the A row is identical to the top reference
row, and the A column is identical to the reference column on the left. It is also significant

that the identity element is in each row and each column exactly once, meaning that for



every element a there is an element b such that a « b = A. The symmetrical distribution of
the identity elements is a testament to the third property of groups: there exists an inverse
such that a *x b = b x a = e, where it does not matter which side the inverse is on.

Every row and every column contains each element of the group precisely one time. This
is due to conformity to the cancellation laws. For example, if R appeared two times in the

B row, once in the L and B columns, we could say

BxL=R
and
BxB=R
Substituting, we get
BxL=BxR

Using the left cancellation law, L. = R, which is clearly not true. Likewise, repeating
elements in columns would violate the right cancellation law. We can therefore deduce that
if a Cayley table is to be a group, it cannot contain the same element twice in any row or

column.

2.4.2 Variations of the Soldier Example

It should be noted that although Cayley tables may differ in the way they appear, that does
not necessarily mean that they are representations of different groups. Take, for example,

the subsequent table:
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(T~ B v [

(T~ B v B N
I &N W
= &N 3=
v = B « T

This table is also an accurate depiction of the group of commands and operator that were
given to the soldier. The only difference is the order of the columns and rows. In order for
the two groups to truly be the same, however, all products between the two tables must be

the same.

2.4.3 Isomorphisms of Groups

The symbols {A, B, R, L} used for the group could have been changed to anything else as
long as the structure of the table remained the same. The following is a Cayley table for the

group consisting of {1, —1,7, —i}.

—i || =i 7 1 -1
Although the soldier group and this group, consisting of real and imaginary number, are

different, they can be described via the same Cayley table. The two groups have the same

shape and structure, meaning that they are isomorphisms of one another (Dogfrey).
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2.5 Subgroups

If we took two elements from the soldier group, “Attention!” and “Aboutface!” it would

yield the following Cayley table:

A

This table is simply the top left corner of the variation for the soldier group’s Cayley
table. It is also an instance of a subgroup.

A subset S is a subgroup of a group G if it satisfies the following:

1. S is closed under the operator for G
2. The identity element of G is also present in S

3. There exists an inverse ¢! for all a € S

If G is truly a group, then S automatically inherits the associative property from G’s
operator, and it does not have to be specifically enumerated among the prerequisites for a
subgroup.

An example of a group and a subgroup is the set Z and the set of even integers under
addition, respectively. Any even integer added to another yields another even integer. The
identity element, 0, is present within the set of even integers. Finally, every even integer has
its opposite, whose sum with itself is 0, the identity element. We can then conclude that
even integers are indeed a subgroup of the set of integers.

Every group of two or more members contains at least two subgroups: the identity element
and the group itself. These are known as trivial subgroups, and any other subgroups that

the group has are known as nontrivial subgroups.
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2.5.1 A finite subset of a group that is closed under the group operation is a

subgroup of that group

In other words, if a finite subset of a group is closed, it is a subgroup that satisfies the other
two axioms automatically.

Proof If one is to imagine a group as a Cayley table, we know that the cancellation laws
restrict each element to appearing at most once in each row and column. As the subgroup
is closed, each row and column contains the elements in the subset in some certain order.
Thus for any a € S, the row and column labeled a both contain a as well. This means
that something, when multiplied by a, yields a itself, indicating the existence of an identity
element, e. If e is in the subset, it must also show up once in every row and column. If e is
in every row and column, that means that that for every a, there is another b (also known
as a~1) such that a * b = e. Finally, we now have a subset that is closed under the group’s
operator, an identity element, and inverses for every element. Therefore a finite subset of a
group that is closed under the group operation is indeed a subgroup of that group.

An important distinction to make is that this only applies to finite subsets. For example,
take the set of all positive integers. Although they are a subset of the group of integers under
addition and are closed under the same operation, they do not form a subgroup of integers.
This is because positive integers do not contain the additive identity element 0. In addition,

it does not contain additive inverses of its elements either.

2.5.2 1If S is a subset of a group G and if for every a and b in S the product

a*b~!isin S, then S is a subgroup of G.

Proof Because axb™! € Sforalla, b€ S, if welet a =b, thenaxa™ € S. Since axa™' = e,
we can say that e exists in S and e € G. Since it has been established that e € S and a € S,
then there must be some inverse that when multiplied by a gives e. Finally, for a, b € S, it

is already stated in the premise that b=! is in S. Since a and b~! are present in S, if we let

13



b=">b""1, then it is given that a * (b™')~! € S. From a previous proof, we know (b=')~! = b,

and therefore a xb € S, and S is closed.

2.6 Cosets

The subgroup of integers divisible by 3 can be written as follows:

{...,—9,-6,—-3,—,3,6,9,...}

. If we are to add 1 to all the integers in the set, a new subgroup is formed:

{...,—8,-5-21,4,7,10,.. .}

. Adding 2 to the original subgroup we achieve:

{..,=7,—4,-1,2,5,8,11,...}

. Together, these three sets comprise the entire set of integers. Furthermore, if we take any
a and b from one particular subset, then a — b is a multiple of 3 and is also in the same
subset.

Something similar happens with the second Cayley table for the soldier group. We already
know that A and B form a subgroup. What is interesting, is that R and L form a coset
of that subgroup, meaning that if an element of {R, L} is multiplied by the inverse of any
member of {R, L} (in other words, either R or L, because they are inverses of each other),

then the product is a member of the {A, B} subgroup.
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3 Fields

A field is a superset of a group and can be most essentially defined as an abelian group with

two binary operations and the distributive property.

3.1 Field Axioms

A field F' with operators * (multiplicative) and + (additive) must conform to the following

properties where a, b, c, e, ey € F":

1. Commutativity.
a+b=b+a

axb=bxa

2. Associativity.
(a+b)+c=a+(b+c¢)

(axb)*xc=ax(bxc)

3. Distributivity.
ax(b+c)=axb+axc

(a+b)xc=a*xc+bxc

4. Identity.
at+e=e +a=a

aA*x€ey=€exy*xa=a

5. Inverse.
a+(—a)=—-a+a=e¢e

axal'=atxa=-e (a#0)
The field described above could be written as (F',4,x). Examples of sets which would

qualify as fields are complex numbers (C), rational numbers (Q), and real numbers (R)

(Weisstein, Fields).
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3.2 Finite Fields

The groups mentioned thus far are all of infinite nature. Finite fields exist as well. Take, for
example, the simplest instance of a finite field: Zy = {0,1}. Cayley tables can be used to

verify this. Note that the operations are performed modulus 2.

+ 10 1 x 10 1

010 1 00 O

111 0 110 1

Addition and multiplication modulus tables can be sketched out to show that Zs is a
field as well, but Z, is not. Perhaps we can generalize for which m 7Z,, is a field. In order to

do this, we must perform two elementary proofs.
3.2.1 axe; = e for all a € F, where I’ is a finite field and ¢; is the additive
identity

Proof The additive identity e;, when added to itself, returns itself, meaning e; = e; + e;.
We can therefore say

axep=ax(e;+e)=axe +axe
axel+ (—axe) =axe +axe;+ (—axep)
ep=ax*e; +e;)
e =axeq)
3.2.2 axb=e; —a=¢e Vb=e;, where I' is a finite field and e; is the additive
identity

Proof If it is given that a * b = e1, then we want to demonstrate that if a # e, then b = e;.

By the inverse property, if a # e, then there exists ¢ such that ¢ *x a = e;. We can thus
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prove b = e; as follows:

b=eyxb=(cxa)xb=cx*x(axb)=cx*xe; =¢

If this is slightly confusing, consider substituting e; with 0, and e; with 1, and it may
become clearer. Before we prove the next theorem, it is important to note that it is the
nature of modulus arithmetic to remain consistent under the laws of commutativity, associa-
tivity, and distributivity. Thus, if one proves the existence of the additive and multiplicative

identities along with the validity of the inverse law, one can declare some set Z,, a field.

3.2.3 Z,, is a field « m is prime

Proof First we assume that m is non-prime. If this is the case, m = ab for 0 < a,b < m
and ab = 0 (mod m). If ab = 0 then @ = 0V b = 0 by the proofs above. However,
this is contradictory to our establishment that 0 < a,b < m. Therefore Z,,, where m is
non-prime is not a field. If ged(a,m)= 1, then it is true that there exists a b such that
ab=ba =1 (mod m), indicating that the inverse property holds. If m is prime, then for

all a € Z,, (a #0), the ged(a,m)= 1, and Z,, is a field (Knudsen).

3.3 Fields and Polynomials

If F is a field, then F[z| represents all polynomials of the variable x with coefficients in F.
Let

f(z) = ao + a17 + agx® + ... + @™

fora; € F (i =0,...,m) and where a,, # e;. The function f is then considered a polynomial
over F' of degree m.
If FF = 0,1, the coefficients of the polynomials in F'[z] are restricted to 0 and 1. Take

a(z),b(z) € Flz] for the following examples.
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Consider a(z) = 22+1 and b(x) = z*+x+1, then a(z)+b(x) = z. Adding the polynomials
normally, we find that a(x) + b(x) = 22% + 2 + 2. In the field {0,1}, however, 1 + 1 = 0,
not 2, so the 22?2 and 2 terms drop out to leave a solitary x. Likewise, if a(z) = 2 + 2% and
b(z) = 2?4+ 1, then a(z) + b(z) = 2% + 1.

Division of polynomials is possible as well. For instance, let f(z),g(x),q(z),r(x) be
polynomials over a field. We can say that f(z) divides g(x), if there is a ¢(z) such that
g(x) = f(x)q(z). We can also say that g(x) = r(z) (mod f(z)) if and only if f(z) |
g(x) — r(z) (see modulus arithmetic). Furthermore, for every f(z) and g(z) # 0, there are
q(z) and r(x) such that g(z) = f(x)q(z) +r(z), where the degree of r is less than the degree
of f.

We previously defined Z,, to be the set of all natural numbers less than m. There is a
similar definition for polynomials over a finite field. It is as follows: Let F' be a finite field
with f(z) € Flz]. F[z]/(f(z)) is then defined as all polynomials over F' with degrees less

than the degree of f (Knudsen). We can thus prove the following theorem.

3.3.1 If F is a finite field with f(x) € F[xz], then |F[z]/(f(z))| = |F|%*)

Understand that |F[z]/(f(x))] is notation for the number of polynomials over F' with degrees
less than the degree of f.

Proof Suppose f has degree m. It would then be of the form f(z) = ag+ ayz + asa® + ...+
anx™. Polynomials of degree less than that of f would be of the form g(z) = by + by +
box? + ...+ by_12™ L. There are |F| possible values, the number of elements in the field F,
that b; for 0 < i < m — 1 can take on. The number of possible polynomials g(z) would thus
be |F|™, because there are m number of terms that g(x) has. This number, m, also happens
to be the degree of f, so we can write the number of polynomials over F with degree less
than f as being | F|%9(/).

A polynomial a(z) € F|x] is considered reducible if there exist polynomials b(z) and ¢(z)
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such that a(z) = b(z)c(x).

3.4 Constructing Finite Fields

We previously proved that Z,, was a field only when m was prime. This, however, does not

necessarily mean that fields of composite numbers of elements do not exist. We can form

fields of other numbers of elements by extending existing fields (Cherowitzo).

For example, a field of 4 is an extension of the prime field of 2, because 4 = 22. First

we must find an irreducible polynomial in the field ' = {0,1}. One such polynomial is

f(x) = 2 + 2 + 1. The polynomials in F[z]/(f(x)) would yield 0,1, z, x + 1, which, in fact,

constitute a field of four elements. These are the addition and multiplication tables for them:

+ 0 1 T r+1 X 0 1 T r+1
0 0 1 x r+1 0 0 0 0 0
1 1 0 r+1 x 1 0 1 x r+1
x x x+1 0 1 x 0 x x+1 1
r+1|z+1 T 1 0 r+1|10 z+1 1 x

Likewise, to find a field of 9 elements, one would take an extension of the field of 3

elements, by finding an irreducible polynomial in that field, and finding all polynomials of

degrees less than that polynomial (Cherowitzo).
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4 Applications

Although groups and fields and the theory that intertwines them is seemingly abstract and
unrelated to the modern world, there are in fact an astounding number of applications for
them. One area in which group theory prevails is music, particularly in musical set theory.
It helps to explain and prove various musical phenomena via mathematics.

Furthermore, field theory can be used to conduct primality tests and serves as the basis
for cryptography. The company RSA, which has set the world standard for public key
encryption devotes a large amount of its revenue towards group and field theory research
and offers prizes of tens of thousands of dollars to those able to utilize mathematics to break
its codes.

However complex group and field theory may be, it is merely a small stepping stone into

the vast realm of number theory, and then mathematics, and the world itself.
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